% DEPARTAMENTO DE ENGENHARIA DE COMPUTACAO E AUTOMACAO INDUSTRIAL

A

FACULDADE DE ENGENHARIA ELETRICA E DE COMPUTACAO

UNIVERSIDADE ESTADUAL DE CAMPINAS
UMICAMP

Estruturas de dados

Ivan Luiz Marques Ricarte

http://www.dca.fee.unicamp.br/~ricarte/

2008

Sumario

1 Tipos de dados 2
1.1 Tipos primitivos o o v e e e e e e e e e 2
1.1.1 Valoresbooleanos 3

1.1.2 Caracteres v v i e e e e e e e 4

1.1.3 Valores numéricos inteiros 5

1.1.4 Valores numéricos reais v i e e 6

1.1.5 Declaracdo de varidveis, 7

1.1.6 Ponteiros e referéncias 8

1.2 Tipos definidos pelo programador 10
1.2.1 Stringsem C++ e 10

1.2.2 Bibliotecasdeclasses. 11

1.3 Tiposagregados e e 12
2 Estruturas lineares 15
2.1 VECIOT e e e e 15
2.1.1 Estruturainternao 16

2.1.2 Criagdo e e e e 16

2.1.3 0peragles e e e e e e 17

214 Tteradores e e 17

22 deque 18
221 Stack e 19

222 QUueUe e e e 20

23 St . . e e e 20
2.3.1 Aspectos de implementagdo 22

2.4 Buscaem estruturas lineares 25
25 Ordenacfo e e e 28
2.5.1 Algoritmos bdsicoso 28

252 Quicksort 30

253 Radixsort. 32

2.54 Ordenagdoem STL 35

Sumadrio

il

3 Estruturas associativas
31 set

32 map
3.3 Aspectos de implementacdo
33.1 Arvores
3.3.2 Tabelashash . . .

4 Representacao interna de valores

4.1 Representacdo de caracteres

4.2 Representacdo numérica bindria

5 A linguagem de programacao C++

5.1 Fundamentosde C4++ L
5.1.1 Organizacdo de programas
5.1.2 BXPressOes v v v v i e e e e e e e
5.1.3 Expressdes condicionaiso e
5.1.4 Controle do fluxodeexecucdo
5.1.5 ArquivosemC
5.2 Palavrasreservadasem Ce C++ L.,

5.3 Precedéncia de operadores

6 Exercicios

36
36
38
40
40
43

47
47
47

50
50
50
53
55
56
59
62
62

63

Estruturas de dados

Em diversos contextos, disciplinas associadas a programacdo recebem a denominagdo
de “processamento de dados”. Esta denominagdo ndo é gratuita — de fato, embora seja
possivel criar procedimentos que ndo manipulem nenhum dado, tais procedimentos seriam
de pouco valor pratico. Uma vez que procedimentos sdo, efetivamente, processadores de
dados, a eficiéncia de um procedimento estd muito associada a forma como seus dados sdo
organizados. Estrutura de dados é o ramo da computag@o que estuda os diversos mecanismos
de organizagdo de dados para atender aos diferentes requisitos de processamento.

Nesta apostila sdo apresentadas algumas estruturas de dados, com énfase naquelas que
sdo utilizadas posteriormente no decorrer do texto. Assim, algumas estruturas de importancia
para outros tipos de aplicacdes — como a representacdo de matrizes esparsas, fundamental
para a drea de computacdo cientifica — nao estdo descritas aqui.

As estruturas de dados definem a organizacdo, métodos de acesso e opgdes de proces-
samento para colegdes de itens de informagao manipulados pelo programa. Dois tipos de
colecdes sdo apresentados. Estruturas lineares sdo aquelas que mantém os seus itens de
forma independente de seus contetddos, ou seja, na qual qualquer tipo de interpretacdo dos
dados que sdo armazenados € irrelevante para a manutenc¢do da estrutura. Estruturas associa-
tivas sdo aquelas que levam em consideracdo a interpretacdo do valor (ou de parte dele) para
a manutencao dos itens na estrutura.

Apresenta-se inicialmente uma visao conceitual de cada tipo de estrutura, com ilustracdes
que utilizam estruturas pré-definidas na biblioteca padrdo de gabaritos (STL) da linguagem
C++. Sdo apresentados também aspectos da organizagdo interna de uma estrutura de dados.
Tais aspectos sdo relevantes para o projeto e implementacdo de uma nova estrutura de dados e
normalmente ndo sdo manipulados por um programador que simplesmente utiliza estruturas
jé existentes na linguagem. Entretanto, é importante que o usudrio detenha tal conhecimento
por dois motivos. O primeiro é simplesmente ter pardmetros para poder selecionar qual a
implementacdo mais adequada, se houver mais de uma disponivel, para a sua aplicacdo. O
segundo motivo € ter conhecimento para, se for necessdrio por ndo haver nenhuma imple-
mentagdo disponivel, desenvolver a sua propria implementacdo de uma estrutura adequada
as suas necessidades.

Capitulo

Tipos de dados

Internamente, todos os dados sdo representados no computador como seqii€ncias de bits,
ou seja, uma seqiiéncia de digitos bindrios (o nome bit € derivado da expressdo binary digit),
onde cada bit € usualmente representado pelos simbolos 0 ou 1. Esta é a forma mais conve-
niente para manipular os dados através de circuitos digitais, que podem diferenciar apenas
entre dois estados (on ou off, verdadeiro ou falso, 0 ou 1). Em assembly, tipicamente to-
dos os valores escalares sdo representados na forma de bytes (grupos de 8 bits), words (dois
bytes ou 16 bits) ou long words (quatro bytes ou 32 bits) — uma seqiiéncia de n bits pode
representar uma faixa com 2" valores distintos. Nestes casos, a interpretacdo desses valores
¢ tipicamente delegada ao programador da aplicagao.

Em linguagens de programacao de alto nivel, ¢ desejdvel ter flexibilidade para lidar com
diferentes interpretacdes para essas seqiiéncias de bits de acordo com o que elas representam.
Esse grau de abstracio € oferecido por meio dos tipos primitivos da linguagem, que estabele-
cem estruturas de armazenamento e conjuntos de operacdes para esses valores. Além disso,
as linguagens de programacao oferecem usualmente mecanismos para trabalhar com conjun-
tos de valores e, em alguns casos, oferecem a possibilidade de criar novos tipos que podem
ser usados pelos programadores. Tais principios de representacdo s@o apresentados a seguir.

1.1 Tipos primitivos

O formato de representagao interna (ou seja, como uma seqii€ncia de bits é traduzida para
um valor) pode variar de computador para computador, embora haja um esfor¢o crescente
para uniformizar a representacdo de tipos basicos. Assim, um cariter usualmente ocupa
um byte com conteddo definido por algum padrdo de codificagdo (EBCDIC, ASCII, Uni-
code, ISO); um ndmero inteiro tem uma representacio bindria inteira (sinal e magnitude,
complemento de um ou complemento de dois); e um valor real é usualmente representado
tipicamente no formato sinal, mantissa e expoente. Alguns desses formatos sdo apresentados
no Apéndice 4.

A linguagem C++, apresentada no Apéndice 5, suporta a definicdo de valores escalares
através da declaracdo de varidveis em um dos seus tipos de dados bdsicos, que sdo: bool,
para representar um valor booleano; char, para representar um cardter; int, para um valor
numérico inteiro; float, para um valor numérico real com precisdo simples; e double,

1.1. Tipos primitivos 3

para representar um valor numérico real com precisao dupla.

1.1.1 Valores booleanos

Uma varidvel do tipo bool de C++ pode receber um valor t rue ou false, apenas:

bool flag = false;

if (...) flag = true;

Quando hd uma expressao ldgica, associada por exemplo a uma condi¢do em um co-
mando if ou while, o seu resultado é um valor do tipo bool. Os operadores relacionais
em C++, tipicamente usados nesse tipo de expressdes, sdo:

> maior que
>= maior que ou igual a
< menor que
<= menor que ou igual a
== igual a
!=diferente de

Observe que o operador de igualdade € ==, e ndo =. Esta é uma causa comum de erros
para programadores que estdo acostumados com outras linguagens onde = é um operador
relacional.

Valores booleanos podem ser combinados com os operadores booleanos:

&& AND
|| OR
' NOT

O operador && (and) resulta verdadeiro quando os dois valores de seus operandos sdo verda-
deiros. O operador | | (or) resulta verdadeiro quando pelo menos um de seus dois operandos
é verdadeiro. Além destes dois conectores bindrios, hd também o operador undrio de nega-
¢do, !, que resulta falso quando o operando é verdadeiro ou resulta verdadeiro quando o
operando ¢é falso.

Expressoes logicas complexas, envolvendo diversos conectores, sdo avaliadas da es-
querda para a direita. Além disto, & & tem precedéncia maior que | |, e ambos t€m precedén-
cia menor que os operadores 16gicos relacionais e de igualdade. Entretanto, recomenda-se
sempre a utilizacdo de parénteses em expressdes para tornar claro quais operacdes sdo deseja-
das. A excecdo a esta regra ocorre quando um nimero excessivo de parénteses pode dificultar
ainda mais a compreensao da expressdo; em tais casos, o uso das regras de precedéncia da
linguagem pode facilitar o entendimento da expressao.

E bom ressaltar que na linguagem C nio existe o tipo bool. Nesse caso, valores 16gicos
sdo representados como valores inteiros e a interpretagdo desses valores é que determina o
valor 16gico — um valor 0 equivale a false e qualquer valor diferente de O € interpretado
como true.

1.1. Tipos primitivos 4

1.1.2 Caracteres

Uma varidvel do tipo char ocupa um byte com o valor bindrio da representagdo de um
carater:

char letra = "A’;

O padrao de representacdo de caracteres basico, ASCII, permite representar 128 caracte-
res distintos (valores entre 0 e 127), entre os quais estdo diversos caracteres de controle (tais
com ESC, associado a tecla de escape, e CR, associado ao carriage return) e de pontuacao.
Uma tabela com a representagdo interna desses valores estd no Apéndice 4.1. H4 outros for-
matos além de ASCII, tais como o padrdo ISO8859 para a representagdo associada a faixa
de valores entre 128 e 255 organizando-a em diversos subconjuntos, dos quais o ISO8859-1
(Latin-1) é o mais utilizado. O padrdo de representacdo Unicode integra varias familias de
caracteres em uma representacdo unificada (em um ou dois bytes), sendo que a base dessa
proposta engloba as codificagdes ASCII e ISO8859-1.

Em C++, os valores de varidveis do tipo cardter podem ser manipulados diretamente pelo
valor inteiro correspondente ou, de forma mais conveniente, pela representacdo do caréter
entre aspas simples. Assim, o cardter ' A’ equivale a uma seqii€ncia de bits que corresponde
ao valor hexadecimal 41 (representada em C++ pela seqiiéncia 0x41), pelo valor decimal
65 ou ainda pelo valor octal 101 (representada em C++ por 0101 — sdo octais os valores
iniciados com o digito 0).

Além dos caracteres alfanuméricos e de pontuagdo, que podem ser representados em uma
funcdo diretamente pelo simbolo correspondente entre aspas simples, C++ também define
representagdes para caracteres especiais de controle do cédigo ASCII através de seqii€ncias
de escape iniciados pelo simbolo \ (barra invertida ou contrabarra). As principais seqiiéncias
sdo apresentadas na Tabela 1.1.

Tabela 1.1 Caracteres representados por seqiiéncias de escape.

\n nova linha \t tabulagdo

\b retrocesso \r retorno de carro

\f alimentagdo de formuldrio | \\ contrabarra

\’ apdstrofo \" aspas

\0 o cardter NUL \xxx qualquer padrio de bits xxx em octal

C++ ndo oferece, além das operacdes que podem ser aplicadas sobre a representacio in-
teira de um cardter, operacdes primitivas especificas para a manipulacdo de caracteres. Ao
invés disso, fungdes para esse fim estdo disponiveis na biblioteca de rotinas padronizadas de
C. A maior parte dessas rotinas sdo de verificacdo da categoria a qual o cariter pertence,
como isalpha (€ um cardter alfabético), isdigit (é a representagdo de um digito) ou
isspace (é espaco em branco). Como tais rotinas fazem herancga da heranca de C, o trata-
mento de valores booleanos associado a elas € a mesma daquela linguagem. H4 ainda duas
rotinas de conversio, t oupper (converter para maitiscula) e tolower (converter para mi-
ndscula). Para usar uma dessas rotinas, o programador deve incluir o arquivo de cabecalho
cctype:

#include <cctype>

1.1. Tipos primitivos 5

char ch;
if (isalpha(ch))

1.1.3 Valores numéricos inteiros

O tipo int representa um valor inteiro que pode ser positivo ou negativo:
int total = 0;

As quatro operagdes aritméticas podem ser aplicadas a valores inteiros, por meio dos
operadores +, —, e /. E importante destacar que quando os dois operandos da divisdo sdo
valores inteiros, a operacdo de divisao inteira é realizada. Assim, o resultado da expressdao
7/2 € 3, ndo 3,5. H4 também o operador % (mddulo) que resulta no resto da divisdo inteira
— por exemplo, 7%2 é 1.

A linguagem C++ oferece também operadores que trabalham sobre a representacio bina-
ria de valores inteiros e caracteres. Estes operadores sio:

& AND bit-a-bit
| OR bit-a-bit
~ XOR bit-a-bit
<< deslocamento de bits a esquerda
>> deslocamento de bits a direita
~ complemento de um (inverte cada bit)

Expressdes envolvendo esses operadores tomam dois argumentos — exceto pelo opera-
dor ~, que € undrio. Por exemplo,

a=x & 0177;
b &= ~0xFF;
c >>= 4;

Na primeira expressdo, a varidvel a recebe os sete bits menos significativos da varidvel x.
A segunda expressdo, que utiliza a forma abreviada de operacdo com atribui¢do, reseta os
oito bits menos significativos da varidvel b. Na terceira expressdo, a varidvel c tem seus bits
deslocados de quatro posicdes a direita.

O ndmero de bytes ocupado por este tipo (e conseqiientemente a faixa de valores que
podem ser representados) refletem o tamanho “natural” do inteiro na mdquina onde o pro-
grama serd executado. Usualmente, quatro bytes (32 bits) sdo reservados para o tipo int
nos computadores atuais, permitindo representar valores na faixa entre —23' a +23! — 1, ou
—2147483 648 a 2147483 647 em complemento de dois (Apéndice 4.2).

Uma forma de descobrir a quantidade de bytes alocado a uma varidvel do tipo int é
aplicar o operador sizeof, que indica o nimero de bytes associado a uma varidvel ou a um
tipo. Por exemplo, a expressao

cout << sizeof (int) << endl;

1.1. Tipos primitivos 6

apresenta na saida o valor 4.

Para expressar o valor maximo (maior positivo) ou o minimo (mais negativo) associ-
ado a uma varidvel do tipo int, C++ define constantes simbdlicas no arquivo de cabecalho
limits, INT_MAX e INT_MIN, respectivamente:

#include <limits>

cout << "Maximo: " << INT_MAX << endl;
cout << "Minimo: " << INT_MIN << endl;

Varidveis inteiras podem ser qualificadas na sua declaragdo como short ou long e
unsigned. Um tipo unsigned int indica que a varidvel apenas armazenard valores
ndo-negativos. Os modificadores short e 1ong modificam o espago reservado para o ar-
mazenamento da varidvel. Um tipo short int indica que (caso seja possivel) o compila-
dor deverd usar um niimero menor de bytes para representar o valor numérico — usualmente,
dois bytes sdo alocados para este tipo. Uma varidvel do tipo 1long int indica que a repre-
sentacdo mais longa de um inteiro deve ser utilizada, sendo que usualmente quatro bytes sao
reservados para variaveis deste tipo.

Estas dimensdes de varidveis denotam apenas uma situag@o usual definida por boa parte
dos compiladores, sendo que nao ha nenhuma garantia quanto a isto. A Unica afirmacdo que
pode ser feita sobre a dimensao de inteiros em C++ € que uma varidvel do tipo short int
ndo terd um nimero maior de bits em sua representacdo do que uma varidvel do tipo long
int.

Em C++, a representacdo de constantes associadas a valores inteiros pode ser expressa
em decimal, octal ou hexadecimal. Nimeros com representacdo decimal sdo denotados por
qualquer seqiiéncia de algarismos entre 0 e 9 que inicie com um algarismo diferente de 0 —
10, 127, 512 etc. Numeros em octal sdo seqiiéncias de algarismos entre O e 7 iniciadas por
0 — 012 (decimal 10), 077 (decimal 63). Nimeros em hexadecimal sdo seqiiéncias de alga-
rismos entre O e F iniciadas com o prefixo O0x — OxF (decimal 15), 0x1A (decimal 26). As
representagdes octal e hexadecimal sdo atrativas como formas compactas de representacio
de valores bindrios — cada algarismo da representagao octal pode ser diretamente expandido
para uma seqiiéncia de trés bits, e da representacido hexadecimal para seqiiéncias de quatro
bits. Assim, tanto 127 quanto 0177 quanto 0x7F correspondem a uma mesma seqiiéncia
de bits, 01111111.

1.1.4 Valores numéricos reais

Os tipos float e double representam valores em ponto flutuante, limitados apenas
pela precisdo da mdquina que executa o programa. O tipo float oferece seis digitos de
precisdo enquanto que double suporta o dobro da precisdo de um float.

Valores com representacdo em ponto flutuante (reais) sdo representados em C++ através
do uso do ponto decimal, como em 1.5 para representar o valor um e meio. A notacdo
exponencial também pode ser usada, comoem 1.2345e-6o0ouem 0.12E3.

A linguagem de programacdo C++ define para estes tipos as quatro operagdes aritméticas
elementares, por meio dos operadores +, —, » ¢ /. Outras operacdes sdo executadas por meio
de rotinas da biblioteca matemadtica de C. Por exemplo,

1.1. Tipos primitivos 7

#include <cmath>

double pi = 4%atan(1.0);

As rotinas definidas nessa biblioteca incluem func¢des trigonométricas, tais como cos,
sin, tan, acos, asin e atan; hiperbdlicas (cosh, sinh, tanh); exponenciais e loga-
ritmicas (exp, 1og, 1ogl10); poténcias (pow, sqgrt); e arredondamento (floor, ceil).

1.1.5 Declaracao de variaveis

Varidveis representam uma forma de identificar por um nome simbdlico uma regido da
memoria que armazena um valor sendo utilizado por uma fungcdo. Em C++, uma variavel
deve estar associada a um dos tipos de dados primitivos ou a uma classe definida pelo pro-
gramador, sendo neste caso denominada um objeto.

Toda varidvel que for utilizada em uma funcdo C++ deve ser previamente declarada. A
forma geral de uma declaragdo de varidvel é:

tipo nome_variavel;

ou
tipo nome_varl, nome_var2, ... ;
onde nome_varl, nome_var2, ... sio varidveis de um mesmo tipo de dado. Para

declarar uma varidvel escalar de nome i do tipo inteiro em um programa C++, a seguinte
expressao seria utilizada:

int i;

Essa declaracdo reserva na memdria um espago para a varidvel i, suficiente para arma-
zenar a representacdo bindria em complemento de dois do valor associado a varidvel, que
inicialmente € indefinido. Outros exemplos vdlidos de declaracdo de varidveis em C++ sdo:

int um_inteiro;

unsigned int outro_inteiro;
char cl, c2;

float salarioMedio;

double x,

yi

Como pode ser observado no exemplo acima, diversas varidveis de um mesmo tipo podem
ser declaradas em um mesmo comando, sendo que o nome de cada varidvel neste caso estaria
separado por virgulas.

Identificadores, ou nomes de varidveis, podem ser de qualquer tamanho, sendo que usu-
almente nomes significativos devem ser utilizados. C++ faz distin¢@o entre caracteres maits-
culos e caracteres minudsculos, de forma que a varidvel de nome salariomedio é diferente
de outra varidvel com nome salarioMedio.

Ha restricdes aos nomes de varidveis. Palavras associadas a comandos e defini¢des da
linguagem (tais como if, for e int) sdo reservadas, ndo podendo ser utilizadas para o

1.1. Tipos primitivos 8

nome de varidveis. A lista de palavras reservadas em C sdo apresentadas no Apéndice 5.2.
O nome de uma varidvel pode conter letras e nimeros, mas deve comecar com uma letra.

Caso se deseje ter um valor definido desde o principio para uma varidvel, a declaracio
deve ser acompanhada da correspondente inicializagdo, como em

int a = 0,
b = 20;
char ¢ = 'X’;

long int d = 12345678L;

Na inicializacdo da varidvel d, o sufixo L indica que essa constante é do tipo 1ong.
Uma varidvel cujo valor ndo serd alterado pelo programa pode ser qualificada como
const, como em

const int notaMaxima = 10;

Neste caso, a tentativa de alterar o valor da variavel not aMaxima seria sinalizada como um
erro pelo compilador. Varidveis deste tipo sao obrigatoriamente inicializadas no momento de
sua declaracio.

1.1.6 Ponteiros e referéncias

Em C++, é possivel ter acesso ndo apenas ao valor de uma varidvel mas também ao seu
endereco. H4 duas formas de indicar nesta linguagem que uma determinada varidvel serd
manipulada através de seu endereco. Na forma mais simples, através de varidveis referén-
cias, o uso do endereco é transparente para o programador. Na outra forma, ponteiros, o
programador € responsdvel por operar explicitamente com os enderecos das varidveis.

O operador undrio &, aplicado a uma varidvel existente, retorna o endereco de memoria
associado a varidvel. A manipulacio explicita de enderecos dd-se através da utilizacdo de
ponteiros. Ponteiros constituem um dos recursos mais utilizados na programacio C e C++.
Eles fornecem um mecanismo poderoso, flexivel e eficiente de acesso a varidveis. H4 compu-
tacdes que s6 podem ser expressas através das referéncias a varidveis, mecanismo suportado
com o uso de ponteiros.

Para definir que uma varidvel vai guardar um endereco, o operador undrio * € utilizado
na declarac¢do, como em

int *ap;

Neste exemplo, ap € uma varidvel do tipo ponteiro para inteiro, ou seja, ela ird receber
um enderego de uma varidvel inteira. Para se obter o endereco de uma varidvel, o operador
undrio & pode ser utilizado. No exemplo acima,

int x;
ap = &x;
Apés esta instrugdo, diz-se que ap aponta para x, ou seja, ap tem como conteido o

endereco da varidvel x. E possivel acessar o valor da varidvel x através do ponteiro usando
o operador undrio x, como em

1.1. Tipos primitivos 9

int vy;
y = *ap;

Neste caso, a varidvel y recebe o contetido da varidvel apontada por ap, ou seja, o conteido
de x nesta seqiiéncia de execucdo.

Observe que a combinacdo xap € um inteiro, que pode assim ser atribuido a outro in-
teiro. Esta associac¢do pode facilitar a compreensao da declaragc@o de ponteiros. No exemplo,
int =ap pode ser lido como “xap é um inteiro.”

Também seria possivel definir o valor de x através do ponteiro, como em

*ap = Yis

Neste caso, o contetdo da varidvel apontada por ap (que é x) recebe o valor de y.
Ponteiros podem tomar parte em expressdes aritméticas. Assim, a seguinte expressao é
perfeitamente valida:

y = *ap + 1;

ou seja, y receberia o valor de x (varidvel apontada por ap) incrementado de um.

Observe que a expressdo ap + 1 expressa um incremento do ponteiro e ndo do con-
tetido armazenado nesse endereco. Como ap é do tipo inteiro, essa expressdao deve ser in-
terpretada como “o inteiro que estd armazenado na posi¢do de memdria seguinte ao inteiro
armazenado em ap”.

A aritmética de ponteiros, ou seja, a realizacdo de operagdes aritméticas envolvendo
ponteiros, é bastante restrita. Afinal, ndo faz muito sentido multiplicar ou dividir o valor de
um ponteiro por outro. Operacdes vélidas envolvem um deslocamento por um certo nimero
de posicoes, tanto para a frente (soma de um valor inteiro a um ponteiro) como para tras
(subtracdo de um valor inteiro de um ponteiro), e a distancia, expressa pela diferenca entre
dois ponteiros. No caso de deslocamento, o resultado da operacdo € um ponteiro; para a
distancia, o resultado € um valor inteiro.

Nas operacdes da aritmética de ponteiros, a unidade do valor inteiro corresponde ao
tamanho em bytes do tipo manipulado pelo ponteiro. Assim, se o valor de ap é 1000 e a
execucao ocorre em uma maquina na qual um inteiro € representado em dois bytes, entdo
ap+1 resulta em 1002. Porém, a mesma expressdo executada em uma outra mdquina com
inteiros representados em quatro bytes retornaria 1004. Com a aritmética de ponteiros, no
entanto , o programador ndo precisa se preocupar com esses detalhes do armazenamento,
trabalhando simplesmente com o conceito de “o préximo inteiro.”

O ponteiro nulo ¢ um valor que representa “nenhuma posi¢do de memoria”, sendo ttil
para indicar condi¢des de erro e evitar o acesso a dreas invdlidas de memoéria. Em C++, um
ponteiro nulo é qualquer variavel do tipo ponteiro cujo valor € 0.

Uma varidvel referéncia torna transparente para o programador o fato de que um ponteiro
esta sendo utilizado internamente para a manipulagdo da varidvel. Para declarar uma variavel
deste tipo, o operador & é novamente utilizado:

int& a;

No momento do uso, a varidvel referéncia ¢ utilizada da mesma forma que uma varidvel
normal. Por exemplo, para adicionar 10 ao contetido da posi¢do associada a varidvel a, a
seguinte expressao pode ser utilizada:

1.2. Tipos definidos pelo programador 10

a += 10;

Observe que ponteiros podem ser declarados sem ter um valor inicial associado, mas isto
ndo pode ocorrer com referéncias.

1.2 Tipos definidos pelo programador

Linguagens de programacao orientadas a objetos, como C++, oferecem aos programado-
res a possibilidade de estender o conjunto de tipos que podem ser usados em suas implemen-
tacdes. O mecanismo bdsico para tal fim € a definicdo de classes.

A defini¢do de uma classe nada mais contém do que a definicdo de uma estrutura interna
e de um conjunto de opera¢des que podem ser aplicados a varidveis desse tipo, que sdo
chamadas de objetos. As operacdes podem ser implementadas como métodos, sendo neste
caso definidas na forma de rotinas e invocadas pelo nome. Alternativamente, C++ permite
que o comportamento de um operador ja existente seja alterado por meio do mecanismo de
sobrecarga de operadores.

Nao esta no escopo deste texto apresentar como classes e métodos sdo definidos ou como
operadores sdo sobrecarregados, mas € importante compreender como esses elementos sdo
utilizados. A classe st ring ilustra bem esses conceitos.

1.2.1 Strings em C++

Em C++, a definicdo da classe string torna transparente a forma de armazenamento da
seqiiéncia de caracteres e sua manipulacdo. Assim, o programador pode abstrair-se de deta-
lhes como terminadores de seqiiéncia ou dos limites de armazenamento associados ao tama-
nho do arranjo, preocupagdes usuais na manipulagao de strings em C.

Para utilizar strings em C++, o programador deve incluir em seu programa o arquivo de
cabecalho st ring. Com essa inclusio, ele pode criar objetos desse tipo de forma similar a
declaragdo de varidveis de tipos primitivos. Por exemplo, no segmento de c6digo

finclude <string>

string estouVazia;

um objeto string estouVazia € criado, neste caso sem nenhum contetdo inicial. Outras
formas possiveis de criagdo de objetos desse tipo sdo:

string socorro("Alguem me ajude!");
string sos (socorro);
string toAqui = "Ta me ouvindo?";

No primeiro caso, é utilizada a forma de inicializacdo de objetos, passando um argumento
entre parénteses — no caso, uma string constante. O segundo exemplo € similar, mas usa
para inicializacdo um objeto ja existente ao invés da constante. No terceiro caso, é usada
uma forma que combina a declaragc@o do objeto e uma atribuicdo.

Métodos sao semelhantes a fungdes, com a diferenca que devem ser aplicados a um
objeto. A forma de aplicacdo de um método dé-se através do operador . (ponto) apds o
objeto. Por exemplo, para obter o tamanho da seqii€ncia armazenado no objeto sos, utiliza-
se 0 método size através de uma expressdo como a seguinte:

1.2. Tipos definidos pelo programador 11

int tamanho = sos.size();

H4 duas formas de obter os elementos individuais de uma seqiiéncia. Uma utiliza o
método at, que recebe um argumento inteiro que indica a posi¢ao desejada, sendo que 0 é a
primeira posi¢do. Por exemplo,

char ¢ = sos.at (2);

teria como resultado o cardter / g’ . A outra forma utiliza o conceito de sobrecarga de ope-
radores da linguagem C++, que permite associar um novo comportamento aos operadores da
linguagem quando aplicados a objetos de uma classe. No caso da classe st ring, um novo
comportamento foi definido para o operador de indexag@o, []1. Assim, a expressdo acima
poderia ter sido representada como

char ¢ = sos[2];

Outros operadores sobrecarregados para objetos da classe st ring incluem o operador
de soma, +, para a concatenacdo de seqiiéncias; e os operadores de comparacdo (==, !=, >,
<, <= e <=), modificados para avaliar o conteido das seqiiéncias e nio seus enderecos de
memoria, o que € causa de um erro comum na manipulacio de arranjos de caracteres em C

1.2.2 Bibliotecas de classes

Embora o conjunto de tipos bésicos de C++ seja relativamente restrito, a possibilidade
de ampliar esses tipos com a defini¢do de novas classes abre muitas possibilidades para os
programadores. Em algumas situagdes, ¢ necessario que o programador crie suas novas
classes, com estruturas e comportamentos especificos para a sua aplicacdo. H4, entretanto,
um grande conjunto de classes que sdo de uso comum e para as quais ndo faria sentido haver
uma nova defini¢do cada vez que um programador tivesse que fazer sua aplicacdo. Tais
classes pré-definidas podem ser utilizadas por meio das bibliotecas de classes.

A classe string é um exemplo de uma classe que faz parte da biblioteca padrdao de
C++, ou seja, é um recurso que todo compilador da linguagem deve oferecer. Outros recursos
oferecidos pela biblioteca padrdo de C++ incluem as classes para manipulacdo de entrada e
saida de dados (streams) e as classes e fungdes parametrizadas da Standard Template Library
(STL).

As classes da STL utilizam o recurso de definicdo parametrizada suportada por C++.
Tal recurso permite que uma definicdo genérica seja especificada para a manipulacio de
elementos de diferentes tipos de modo que, quando necessério, o compilador saiba instanciar
corretamente uma definicdo para o tipo desejado. Considere por exemplo a defini¢do de uma
funcio swap para trocar os contetidos de duas posi¢cdes de memoria. Para duas posi¢des do
tipo int, a defini¢do seria

void swap (inté& a, inté& b) {

int temp = a;
a = b;
b = temp;

1.3. Tipos agregados 12

Para utilizar o mesmo comportamento com outro tipo de dados — double ou long, por
exemplo — seria necessario, sem o mecanismo de defini¢do parametrizada, que novas fun-
coes fossem definidas com a substituicdo de int pelo tipo desejado. Com a defini¢do para-
metrizada, isso ndo é necessdrio. A especificagdo da fung¢do genérica indica a posicao onde
um tipo (primitivo ou classe) ird ser substituido, quando necessério:

template<typename T> void swap (T& a, T& b) {
T temp = a;
a = b;
b = temp;

Quando o compilador encontrar uma invocagdo a fungdo swap, como em

int a = 10, b = 39;

swap (a, b);

ele reconhece que € preciso construir uma instincia da funcdo para o tipo inteiro, automati-
camente. Nao € preciso que o programador dé nenhuma indicacao adicional para isso.

Do mesmo modo, classes parametrizadas podem ser definidas com referéncias a elemen-
tos de tipos genéricos, que podem ser substituidos por tipos efetivos no momento da decla-
racdo dos objetos daquela classe. Para o programador, o uso de uma classe parametrizada é
simples; requer que ele especifique, no momento da criagdo do objeto, qual € o tipo que deve
ser utilizado internamente pela classe. Essa especificagdo da-se através da indicacdo do tipo
entre os simbolos de menor e maior. Por exemplo, seja cp uma classe parametrizada que
requer a especificagdo de um tipo. Se for criado um objeto c1 onde esse tipo seja int, entdo
a expressao correspondente seria

cp<int> cl;

O conjunto de classes e algoritmos da biblioteca STL definem recursos de uso genérico
para permitir que o programador trabalhe com estruturas de dados usuais. Esses recursos
estdo agrupados em trés grandes categorias (containers, iteradores, algoritmos) e utilizam
o mecanismo de defini¢des parametrizadas para poder trabalhar com qualquer tipo de con-
teido. Para cada classe genérica hd um conjunto basico de métodos para a sua manipulagio
(a API — Application Programming Interface). No fundo o conhecimento desta API € a
unica informagao relevante para um programador que utiliza um elemento da biblioteca.

1.3 Tipos agregados

As linguagens de programacg@o normalmente oferecem facilidades para construir agre-
gados contiguos e uniformes, ou seja, nos quais todos os elementos sdo de um mesmo tipo
e estdo armazenados em uma 4rea contigua de memoria. Sdo os arranjos; seus elementos
podem ser acessados através de um indice representando a posicao desejada.

Em C++, arranjos sdo definidos e acessados através do operador de indexacdo [], como
em:

1.3. Tipos agregados 13

int elem[5];

elem[0] = 1;

Neste exemplo, um arranjo de nome elem é definido. Este arranjo tem espaco para
armazenar cinco valores inteiros, que serdo referenciados no programa como elem[0],
elem[1l],elem[2],elem[3] eelem[4]. Observe através desse exemplo que o pri-
meiro elemento de um arranjo em C++ € sempre o elemento de indice 0 (elem[0]). Con-
seqiientemente, para um arranjo com N elementos o dltimo elemento € o de indice N-1
(elem[4], no exemplo).

A implementagdo de arranjos estd intimamente ligada ao conceito de ponteiros. Quando
se cria, como acima, um arranjo com cinco inteiros, reserva-se o espago na memoria para
armazena-los e atribui-se um nome para o endereco inicial dessa drea — em outras palavras,
um ponteiro. O acesso ao valor i-ésimo elemento do arranjo elem, elem[1i], equivale a
€xpressao

* (elem + 1)

As duas formas de indicar o elemento acessado podem ser usadas indistintamente. Entre-
tanto, enquanto o valor de uma varidvel ponteiro que nao seja const pode ser alterado, o
valor base de um arranjo ndo pode.

E fundamental entender em que regido da memdria os dados de um arranjo serdio armaze-
nados. Todo processo mantém uma drea de dados na memoria e também uma area de pilha,
que € utilizada na passagem de pardmetros entre func¢des e para o armazenamento de valores
temporarios, como as varidveis locais de uma funcdo. Se um arranjo € declarado como uma
varidvel local de alguma fung¢ao, entdo os valores de seus elementos s6 serdo preservados en-
quanto a fung¢do estiver “ativa”, ou seja, enquanto ela ainda ndo tiver concluido seu escopo.
Quando a fungdo retorna, ela libera o espago que ocupava na pilha e suas varidveis locais sdao
descartadas.

Caso seja necessdrio que a informacgdo seja mantida além do tempo de execucdo de uma
funcdo, ela deve estar alocada a drea de dados. Em C e C++, ha duas maneiras bésicas de
fazer isto. A primeira é ter a varidvel declarada fora do escopo de uma funcao. Deste modo, a
varidvel € alocada, por padrio, a drea de dados estdtica do programa. A outra forma € declarar
a varidvel no escopo da funcdo mas acrescentar na declaracio a palavra-chave static, uma
indicagdo de que a varidvel ndo deve ser armazenada na pilha como o padrdo para varidveis
locais.

H4 uma terceira maneira de manter esses valores além do escopo da funcdo na qual
eles foram gerados, por meio da alocacdo dindmica de memoria. Neste caso, a aplicacdo
solicita ao sistema operacional a expansdo da sua 4rea de dados obtendo espaco de uma drea
suplementar, o heap. Em C++, o operador new ¢ utilizado para esse fim — ele recebe uma
indicagdo de qual tipo serdo os elementos dessa drea e, no caso de agregados, para quantos
elementos deve ser reservado espago; o retorno € um ponteiro para o inicio da drea alocada.
Por exemplo,

string *ustr = new string;
int xiptr = new int[100];

1.3. Tipos agregados 14

Na primeira expressdo, o operador new é utilizado para reservar espaco para um tnico ele-
mento — neste caso, um objeto da classe st ring. Na outra expressdo, uma area para cem
valores inteiros € alocada.

Areas que foram alocadas com o operador new devem ser liberadas apds o uso. Um
programa que aloca muitas dreas de memoria sem liberd-las sofre do problema de vazamento
de memoria, que pode causar até mesmo a interrup¢io de sua execucdo por falta de recursos.
A liberagdo de drea alocada em C++ € feita com o operador delete. Um cuidado que deve
ser tomado é que este operador deve usar a mesma forma que foi usada na alocacdo — se
uma area para varios elementos foi alocada, o operador de liberagdo da area deve indicar o
fato. Assim, para os exemplos acima, as formas corretas para os correspondentes usos de
delete sdo

delete ustr;
delete [] iptr;

Se aforma delete iptr fosse utilizada, o compilador ndo indicaria um erro, mas apenas
a primeira posi¢@o da drea seria liberada e o vazamento de memoria ainda existiria.

o 2

Capitulo

Estruturas lineares

Estruturas lineares sdo aquelas que mantém os seus itens de informacdo de forma inde-
pendente de seus valores. A dnica informacao utilizada pela estrutura € a posicdo do item;
qualquer manipulagdo relativa ao contetddo ou valor desse item € atribui¢do da aplicagao.

Estruturas lineares sdo, ao menos conceitualmente, naturais para programadores. Os
arranjos oferecem uma forma bésica de definir um agregado de dados linear e com acesso
indexado. No entanto, sdo estruturas estéticas, ou seja, ndo hd como modificar a dimensdo de
um arranjo ap6s sua criacdo. Ademais, mesmo para uma estratégia de organizagdo simples
como a estrutura linear, hd opera¢des que nio ocorrem eficientemente em um arranjo. Um
exemplo evidente € a insercdo de novo elemento em uma posi¢do intermedidria de um ar-
ranjo parcialmente preenchido — seria necessario mover todos os elementos ja inseridos em
posicdes posteriores uma posicao adiante. Se o arranjo tiver varios elementos, tal operacdo
pode ser extremamente lenta.

A STL de C++ oferece um elenco de classes que definem estruturas lineares, que podem
ser utilizados em diferentes situagdes, de acordo com as necessidades do programador. As
estruturas lineares basicas da STL de C++ sdo vector, deque e 1ist.

2.1 vector

Uma colecdo do tipo vetor pode ser vista como um arranjo cuja capacidade pode variar
dinamicamente. Se o espago reservado for totalmente ocupado e espaco adicional for neces-
sério, este serd alocado automaticamente — o programador nio precisa se preocupar com a
capacidade de armazenamento ou com a ocupacdo até o0 momento.

Sempre que uma colecio dinAmica for necessdria, o programador deve considerar o vetor
como uma op¢ao, pois € o tipo de estrutura mais simples e com menor sobrecarga de memoria
para o seu armazenamento. Se as caracteristicas de manipulag¢do de elementos definidas pelo
vetor forem no entanto inadequadas para a aplicagdo, entdo as outras opgdes de estruturas
devem ser avaliadas.

2.1. vector 16

2.1.1 Estrutura interna

Para que o programador possa utilizar a colecdo sem se preocupar com tais aspectos, o
implementador da classe providenciou os cuidados para que, internamente, as informagdes
necessdrias fossem mantidas — por exemplo, qual é a quantidade total de elementos e qual
¢ a dltima posi¢do ocupada na colegdo (Figura 2.1).

Figura 2.1 Estrutura do tipo vetor

inicio capacidade +
l B\
2
dltima posigao
ocupada

2.1.2 Criacao

Para criar uma colecio desse tipo, é preciso incluir no programa o arquivo de cabecalho
vector. Por exemplo, para criar um objeto vint que € um vetor de elementos do tipo
int,

#include <vector>

vector<int> wvint;

Para criar um vetor de outros tipos definidos pelo programador, € preciso incluir as decla-
racdes associadas a esse outro tipo, usualmente em um arquivo de cabecalho. Por exemplo,
para criar um vetor de strings:

#include <vector>
#include <string>

vector<string> umalista;

Quando criado dessa forma, o vetor estd vazio e tem tamanho 0. E possivel criar um
vetor com algum conteddo inicial usando a forma alternativa:

vector<int> ovi(10,0);

Neste caso, o vetor é criado com dez elementos com o mesmo valor (0).

A medida que o vetor vai recebendo novos elementos, o espago interno é realocado, caso
necessdrio. O programador pode obter quanto espaco hd internamente para os elementos do
vetor com a aplicacdo do método capacity:

int espaco = vint.capacity();

Se o programador tem uma boa nocio de quantos elementos serdo armazenados no ve-
tor, ele pode evitar realocagdes intermedidrias de espago ao solicitar uma alteracdo nessa
capacidade com o método reserve.

2.1. vector 17

2.1.3 Operacdes

A forma bésica de inser¢do de um elemento no vetor sua colocacio ao final do vetor, por
meio do método push_back. Por exemplo, para o vetor vint definido acima, o trecho de
cédigo

unsigned int pos = 0;
for (pos=0; pos<1l0; ++pos)
vint .push_back (pos+10);

preenche as dez posigdes iniciais do vetor com os valores de 10 a 19.

O acesso ao contetido do vetor pode se dar de duas formas. O método at recebe por
argumento o indice ou posicdo do elemento desejado — como para arranjos, o primeiro
elemento tem indice 0 — e retorna a referéncia para o elemento indicado. A outra forma é
por meio do operador de indexagdo [] sobrecarregado na classe, que ¢ utilizado como se o
vetor fosse um arranjo:

int valor = vint|[pos];
A quantidade de elementos em um vetor € obtida com a aplicagdo do método size:
int tamanho = vint.size();

Para verificar se a cole¢do estd vazia, o método empty (que retorna um valor booleano) é
mais eficiente do que comparar size com o valor 0.

A remocio do elemento que estd no final do vetor ocorre eficientemente com a aplicagdo
do método pop_back, pois neste caso o tempo da operagcdo independe da quantidade de
elementos armazenados no vetor, ou seja, tém complexidade temporal constante. Deve-se
observar que, como internamente o vetor utiliza para o armazenamento dos dados um arranjo,
insercdes e remogdes de elementos em uma posicdo intermedidria ndo sdo eficientes, pois tém
complexidade linear.

2.1.4 lteradores

A varredura, ou seja, a operacio de percorrer os elementos de um agregado, pode reali-
zado por meio das fungdes providas para o acesso a seus elementos. Por exemplo, para listar
o contetddo do vetor vint, o seguinte fragmento de c6digo poderia ser utilizado:

cout << "wvint: ";
for (pos=0; pos < vint.size(); ++pos)
cout << wvint[pos] << " ",

cout << endl;

A forma mais eficiente e aplicdvel também a outras estruturas, entretanto, faz uso do
conceito de iteradores. Um iterador € um objeto interno a um agregado que, por conhecer
a forma como seus elementos sdo armazenados, implementa eficientemente a varredura. Por
exemplo, um iterador para um vetor de inteiros é declarado

vector<int>::iterator itv;

2.2. deque 18

O programador, por sua vez, ndo precisa se preocupar como os elementos sdo armaze-
nados — apenas utiliza as func¢des associadas ao iterador para percorrer os elementos. Para
obter a referéncia a um objeto iterador no inicio da cole¢do, o método begin € utilizado:

itv = vint.begin();

Ja o método end retorna um iterador posicionado apds o tltimo elemento do agregado. Os
operadores sobrecarregados *, ++ e ! = sdo usados para, respectivamente, obter a referéncia
para o elemento na posicao corrente do iterador, avancar o iterador para o proximo elemento
e comparar iteradores. Dependendo da estrutura interna da colecdo, outros tipos de iteradores
podem ser oferecidos, com mais operacdes de acesso. Iteradores bidirecionais sobrecarregam
o operador de decremento (——). Iteradores de acesso direto permitem o uso da aritmética de
ponteiros, ou seja, permitem saltos maiores do que uma posicdo durante a varredura.

Deste modo, o fragmento de cédigo para listar os elementos do vetor vint usando o
iterador it v pode ser concluido

cout << "vint: ";
while (itv != vint.end()) {
cout << *xitv << " ",
++itv;
}

cout << endl;

H4 algumas operagdes das colecdes que requerem como argumento um iterador, ou seja,
trabalham durante a varredura da colecdo. E o caso dos métodos insert e erase, por
exemplo, que sdo utilizados para inserir ou para remover, respectivamente, um elemento de
uma posicao arbitraria da colecdo.

2.2 deque

O deque € uma estrutura linear, similar a um vetor, mas com informac¢do mantida inter-
namente sobre a posicdo das suas duas extremidades, inicial e final (Figura 2.2).

Como no vetor, manipulacdes em posicOes intermedidrias da estrutura, com os méto-
dos insert e erase, nlo sao eficientes. No entanto, o deque permite operar eficiente-
mente com ambas as extremidades da colecdo. Além dos métodos presentes em vector,
push_back e pop_back, que respectivamente inserem ou removem o elemento na ex-
tremidade final, o deque tem implementacdes eficientes para os métodos push_front e
pop_front, que manipulam a extremidade inicial da estrutura.

Figura 2.2 Estrutura do tipo deque

inicio fim

¥ ¥

2.2. deque 19

Como para qualquer estrutura seqiiencial de C++, os métodos size e empty retornam
informacao sobre a ocupacgao da colecdo. Iteradores sao utilizados como em vector, como
ilustrado no exemplo abaixo:

#include <deque>
deque<int> dqgi;

int pos=0;

while (pos < 10) {
dgi.push_front (pos++);
dgi.push_back (pos++);

deque<int>::iterator itd;
for (itd = dgi.begin(); itd != dgi.end(); ++itd)
cout << *itd << " ";

A execucdo do cédigo desse exemplo apresenta na tela:

8642013579

2.2.1 Stack

Além das colecdes, a biblioteca STL também oferece alguns adaptadores de colecoes,
que usam alguma cole¢do internamente para oferecer um elemento com maior grau de abs-
tracdo. Este é o caso de stack ou pilha, uma estrutura linear com restri¢do na politica de
acesso aos seus elementos — a ordem de saida € inversa 4 ordem de entrada. Esta politica é
usualmente denominada LIFO (last in, first out), ou seja, Ultimo que entra é o primeiro que
sai.

Um stack de STL oferece as operacdes push para inserir um elemento no topo da
pilha e pop para remover o elemento no topo da pilha. Além dessas operacdes bdsicas de
pilha, a classe tem também os métodos t op, para inspecionar o elemento que esta no topo,
empty para testar se a pilha estd vazia e size para obter a quantidade de elementos na
pilha. O exemplo a seguir ilustra a utilizagdo desses métodos:

#include <stack>
stack<int> pilha;

for (int pos=0; pos<5; ++pos)
pilha.push (pos) ;

while (! pilha.empty()) {
cout << pilha.top() << " ";
pilha.pop();

}

cout << endl;

2.3. list 20

Este exemplo, quando executado, apresenta na tela o resultado
4 3 2 1 O

Embora possa usar qualquer estrutura linear como elemento interno, a implementagao
padrido de stack utiliza o deque. Caso deseje-se utilizar outra estrutura, como um vetor,
essa pode ser especificada no momento da declaragao:

stack<int, wvector<int> > pilha;

2.2.2 Queue

Assim como stack, a cole¢do do tipo queue é uma adaptagdo sobre uma estrutura
linear, que implementa uma politica restrita de acesso — neste caso, a politica FIFO (first
in, first out), ou seja, o primeiro elemento que entra é o primeiro elemento que sai. Essa
estrutura é a implementacdo de uma fila, que € suportada eficientemente por uma estrutura
do tipo deque.

Assim como stack, as operagdes suportadas por um queue sio push, pop, front,
empty e size. A diferenca estd no comportamento do método pop, que remove o elemento
que estd no inicio da fila. Uma diferenca estd no método de inspe¢ao de conteido — ao invés
de top, na fila hd os métodos front e back para inspecionar o elemento que estd no inicio
ou no fim da fila, respectivamente.

Compare o c6digo anterior, que usa pilha, com este exemplo que usa fila:

finclude <queue>

queue<int> fila;
for (int pos=0; pos<5; ++pos)
fila.push (pos);

while (! fila.empty()) {
cout << fila.front () << " ";
fila.pop();

}

cout << endl;

A execucio desse codigo de exemplo resulta em

01234

2.3 list

Uma estrutura linear do tipo 1ist é uma implementacio de uma lista ligada. Em uma
estrutura deste tipo, os elementos na coleco nio estdo armazenados necessariamente em
posicdes contiguas. Assim, junto a cada elemento é preciso manter a informacdo sobre
a localizagdo do préximo elemento da lista (Figura 2.3). Uma referéncia para o primeiro
elemento da lista deve ser mantida para permitir o acesso a qualquer outro elemento.

2.3. list 21

Figura 2.3 Estrutura do tipo lista — simplesmente ligada

topo >

Durante uma varredura na lista, a informacdo sobre a posicao atual deve ser mantida
para buscar o préximo elemento. Para cada nova varredura, entretanto, o acesso deve ser
reiniciado a partir do primeiro elemento da colecao.

A classe 1ist da biblioteca STL de C++ implementa, na verdade, uma lista duplamente
ligada. Neste caso, além da informagdo sobre o préximo elemento da lista, associado a cada
elemento deve haver também informacdo sobre a localizacdo do elemento anterior da lista
(Figura 2.4). Deste modo, varreduras nos dois sentidos — do inicio para o fim ou do fim para
o inicio — sdo eficientemente implementadas.

Figura 2.4 Estrutura do tipo lista — duplamente ligada

topo—™ (’

A classe suporta os métodos de acesso presentes nas outras estruturas lineares. Os méto-
dos push_front e pop_front manipulam o elemento no topo da lista, ao passo que os
métodos push_back e pop_back manipulam o dltimo elemento da lista. Pela sua carac-
teristica, a estrutura do tipo lista executa eficientemente inser¢des e remogdes de elementos
em posigdes intermedidrias. As implementacdes dos métodos erase e insert na posi¢do
corrente t€ém complexidade temporal constante, ou seja, dada uma posicdo para efetuar a
operacdo, ndo hd dependéncia em quantos elementos hd antes ou depois dele na lista.

2.3. list 22

Em contrapartida, o acesso direto a elementos armazenados no interior da lista ndo é
eficiente. Por exemplo, para acessar o sétimo elemento da lista € necessario percorrer os seis
primeiros elementos. Por este motivo, a operacdo at nao € aplicdvel e o operador de acesso
indexado [] ndo é sobrecarregado para este tipo de estrutura.

Para percorrer uma lista, um iterador pode ser obtido como para as outras estruturas
lineares. O exemplo a seguir ilustra o uso de um iterador para realizar a varredura em ordem
reversa:

#include <list>
list<int> lista;

for (int pos=0; pos<5; ++pos)
lista.push_back (pos);

list<int>::reverse_iterator ril;

ril = lista.rbegin();

while (ril != lista.rend()) {
cout << *ril << " ",
ril++;

}

cout << endl;

O resultado da execugdo desse cédigo € a apresentacio dos elementos da lista do fim para
o inicio:
4 3210

O iterador para 1ist é bidirecional, ou seja, sobrecarrega tanto o operador de incre-
mento como o de decremento, mas nio de acesso direto.

2.3.1 Aspectos de implementagéo

Uma lista ligada € uma estrutura que corresponde a uma seqiiéncia légica de entradas ou
nés. Tipicamente, em uma lista ligada ha um ou dois pontos conhecidos de acesso — nor-
malmente o topo da lista (seu primeiro elemento) e eventualmente o fim da lista (seu tltimo
elemento). Cada n6é armazena também a localizacdo do préximo elemento na seqiiéncia, ou
seja, de seu né sucessor.

Em uma lista simplesmente ligada (Figura 2.3), a informac¢do em um né pode ser abs-
traida para dois campos de interesse: info, o conteido do nd, e next, uma referéncia para o
préximo nod da lista. A entrada que determina o topo da lista deve ser registrada a parte da
lista ou em um no6 especial, o né descritor, com contetido vazio. A entrada que marca o fim
da lista ndo precisa de indicac¢do especial — tipicamente, a referéncia vazia como valor de
next marca o final da lista.

Para apresentar como uma lista simplesmente ligada pode ser implementada, considera-
se aqui que o n6 de uma lista é um tipo definido pelo programador com a seguinte estrutura:

NODE | info : OBJECT
next : NODE

2.3. list 23

O tipo OBJECT ¢ usado aqui para indicar que o contetido poderia ser de qualquer tipo, de
acordo com a aplicagao.

Como listas sdo estruturas dindmicas, normalmente sdo definidos procedimentos que
permitem criar e remover nds na memoria. Neste texto, a criagdo e remo¢do de um néd
estardo associadas respectivamente aos procedimentos:

CREATENODE(OBJECT e). Aloca recursos (drea de memoria) para guardar a informacao
especificada nos argumentos. Retorna uma referéncia para o n6 criado, do tipo NODE;
e

DELETENODE(NODE n). Libera os recursos usados pelo né.

A informagao sobre a estrutura de uma lista ligada estd distribuida ao longo de seus nos.
Assim, a unica informacdo adicional requerida para manter a lista € a especificagdo de seu
no descritor:

LISTE top : NODE

Na criacdo de uma lista, o né descritor estd inicialmente vazio, de forma que seu campo
next tem o valor nulo. Assim, um procedimento para verificar se a lista estd vazia deve
verificar o valor desse campo. Esse procedimento estd descrito no Algoritmo 2.1.

Algoritmo 2.1 Verificagdo se a lista ligada esté vazia.
ISEMPTY(LIST /)

1 if l.top.next = NIL

2 then return true

3 else return false

Estabelecer a conexo entre dois nés € uma operagao simples e freqiiente na manipulagdo
de listas. Para estabelecer a ligacdo entre um nd ja pertencente a uma lista e um novo nd, basta
fazer com que o novo noé referencie no campo next o né que anteriormente era referenciado
pelo né original — mesmo que esse campo tenha o valor nulo. Para concluir a conexao, o né
original deve ter atualizado o campo next para referenciar o novo né.

O efeito dessa conexdo ¢ ilustrado na Figura 2.5. Neste caso, o nd n2 deve ser inserido
entre o né nl e o nd nX. A situacao original, antes da ligacdo, mostra que nl.next é nX —
este € o valor que n2.next deve assumir apos a ligacao, ao passo que nl.next deverd receber
o valor n2.

O procedimento LINKNODE, apresentado no Algoritmo 2.2, descreve como estabelecer
essa ligacdo entre os dois nds que sao passados como argumento.

Algoritmo 2.2 Ligacio de dois nos.
LINKNODE(NODE n1, NODE n2)
1 n2.next «— nl.next

2 nl.next < n2

2.3. list 24

Figura 2.5 Efeito da aplicacdo do procedimento LINKNODE.

AN ONNNAN
NN P NN\ NN NN
ned ne:d INNNNNN ANNNNNY
M nX i 4T \ e it
NN n ——— "%
SN N
nz nz
(a) Antes da ligacao (b) Ap6s a ligacao

H4 duas possibilidades que podem ser consideradas para a inser¢do de um novo né em
uma das extremidades da lista, dependendo da opcao de se inserir 0 novo nd no inicio (antes
do primeiro elemento) ou no final (apds o ultimo elemento) da lista.

A primeira dessas possibilidades estd representada através do procedimento INSERT, que
recebe como argumentos as referéncias para a lista e para o n6 a ser inserido. O Algoritmo 2.3
apresenta esse procedimento, que simplesmente estabelece a ligacdo do né descritor com o
novo no.

Algoritmo 2.3 Insercdo de n6 no topo da lista ligada.
INSERT(LIST [, NODE n)
1 LINKNODE(l.top,n)

O procedimento que acrescenta um nd ao final da lista necessita varrer a lista completa-
mente em busca do dltimo nd, aquele cujo campo next tem o valor nulo. Para tanto, requer a
utilizacdo de uma varidvel interna que indica qual o n6 estd atualmente sendo analisado. No
momento em que o campo next desse né tiver o valor nulo, entdo sabe-se que o dltimo né da
lista foi localizado. Esse procedimento, APPEND, estd descrito no Algoritmo 2.4.

Algoritmo 2.4 Insercdo de n6 no final da lista ligada.
APPEND(LIST /, NODE n)

declare curr : NODE

curr < l.top

while curr.next # NIL

do curr < curr.next

LINKNODE(curr, n)

N AW N =

De forma similar, o procedimento para retirar um né do inicio da lista é mais simples
que aquele para retirar um né do fim da lista, pois este requer a varredura completa da lista.
Nos dois casos, o valor de retorno € uma referéncia ao né retirado; a partir dessa referéncia,
a aplicacdo pode determinar o que deseja fazer com o nd, se manipular a informagdo nele
contida ou simplesmente liberar os recursos com o procedimento DELETENODE. Um valor
de retorno nulo indica que a operagdo foi especificada sobre uma lista vazia.

2.4. Busca em estruturas lineares 25

O procedimento que retira o primeiro n6 da lista é apresentado no Algoritmo 2.5. Embora
a linha 5 desse algoritmo nao seja absolutamente necessdria, ela garante que ndo ha meios de
acesso aos noés da lista exceto pelos procedimentos definidos. Se ela ndo estivesse presente,
seria possivel que a aplicac@o, ao obter o né com a informacdo de endereco do seu antigo
sucessor, tivesse acesso a um no da lista de forma direta.

Algoritmo 2.5 Retirada do primeiro n6 da lista ligada.
REMOVEFIRST(LIST /)

1 declare first : NODE

2 first « l.top.next

3 if first # NIL

4 then LINKNODE((.top, first.next)

5

6

first.next < NIL
return first

O procedimento para a retirada de um n6 do fim da lista € descrito no Algoritmo 2.6. Da
mesma forma que no procedimento de remog¢ao do primeiro elemento da lista, a situagcdo de
manipulacido de uma lista vazia deve receber tratamento especial. Como no procedimento
de inser¢do, uma varredura de toda a lista € feita mantendo-se uma referéncia para o né
sob andlise; adicionalmente, mantém-se uma referéncia para o né anterior a este de forma a
permitir a atualizac¢do da indicagd@o do fim da lista.

Algoritmo 2.6 Retirada do ultimo né da lista ligada.

REMOVELAST(LIST [)

declare pred,curr : NODE

pred <« l.top

curr < l.top.next

if curr # NIL

then while curr.next # NIL
do pred « curr
curr < curr.next

pred.next < NIL

return curr

O 00 3O DN A~ W~

Dependendo da aplicagdo, outros procedimentos podem ser associados a manipulagdo de
uma lista ligada, tais como obter o nimero de nés na lista, SIZE(); concatenar ou combinar
duas listas, CONCAT(); inserir elemento em posicdo especifica da lista, INSERTAT(); ou
remover elemento em posi¢do especifica, REMOVEAT().

2.4 Busca em estruturas lineares

Para muitas aplicacdes, o conjunto de operagdes apresentado até aqui para estruturas
lineares e seus adaptadores (como pilha e fila) suporta todas as necessidades. Entretanto, ha

2.4. Busca em estruturas lineares 26

situacdes nas quais € necessario descobrir se um determinado valor estd presente ou nio na
colecdo. Em tais casos, operagdes de busca sdo utilizadas.

A busca em uma estrutura linear usualmente percorre a colecdo a partir do primeiro ele-
mento. Se este é o elemento procurado, entdo a busca estd concluida. Caso contrério, a
pesquisa deve prosseguir com o proximo elemento e assim sucessivamente, até que o ele-
mento procurado seja encontrado ou até que a pesquisa conclua no tltimo elemento da lista
sem que o elemento desejado tenha sido encontrado.

Esse procedimento ¢ ilustrado para a estrutura de lista simples apresentada acima. Neste
caso, considera-se que o campo de contetido tem uma informagéo ¢ que € utilizada como a
chave para a busca — deve ser igual ao valor k£ passado como argumento. O procedimento,
apresentado no Algoritmo 2.7, retorna uma referéncia para o campo de informagdo do né
encontrado ou o valor nulo se ndo for encontrado nenhum né que satisfaca a condi¢do de
busca.

Algoritmo 2.7 Busca de n6 com chave especificada em lista ligada.
FIND(LIST [, KEY k)
1 declare curr : Node
curr <« l.top.next
while curr # NIL
do if curr.info.c =k
then return curr.in fo
else curr « curr.next
return NIL

~N Nk W

A biblioteca STL de C++ implementa algoritmos de busca que podem ser usados com
as estruturas lineares aqui apresentadas. O algoritmo de busca mais simples é £ind que,
como os demais procedimentos genéricos de STL, estd declarado no arquivo de cabecalho
algorithm. Este procedimento recebe trés argumentos, dois iteradores para especificar o
inicio e o final da regido a ser procurada e, como terceiro argumento, o valor que esta sendo
procurado.

Por exemplo, para procurar pelo valor 12 no vetor vint inteiro, o seguinte fragmento de
codigo seria utiizado:

#include <algorithm>
vector<int>::iterator resultado;
resultado = find(vint.begin(), vint.end(), 12);

O resultado da busca também é um iterador sobre a colecdo, que indicard a posicdo na
qual o elemento foi encontrado ou, caso o elemento nio esteja na colecdo, retorna 0 mesmo
iterador que end retorna.

Os algoritmos da biblioteca STL que sdo aplicados aos containers também podem ser
aplicados a arranjos. Neste caso, o “iterador” de inicio € o ponteiro para o inicio do arranjo
e, para o final, o ponteiro para a posi¢do imediatamente apds a Gltima. Por exemplo, para
realizar a busca de um valor x em um arranjo de inteiros a com t posi¢des, a seguinte
invocagdo ¢ utilizada:

2.4. Busca em estruturas lineares 27

int* resultado = find(a, a+t, x);

O atrativo desse procedimento de busca linear ¢ a simplicidade. Porém, seu uso estd res-
trito a estruturas pequenas, pois caso contrdrio ele é muito ineficiente. O tempo de pesquisa
cresce linearmente com o nimero de entradas na estrutura, ou seja, o algoritmo apresenta
complexidade temporal O(n). Se for possivel manter os dados da estrutura segundo algum
critério de ordenagdo, é possivel melhorar o desempenho da busca numa estrutura linear.
Neste caso, € possivel utilizar no momento da busca uma estratégia andloga aquela utilizada
ao procurar uma palavra no diciondrio:

1. Faz-se uma estimativa da posicao aproximada da palavra e abre-se na pagina estimada.

2. Se a palavra ndo foi encontrada nessa pigina, pelo menos sabe-se em que direcio
buscar, se mais adiante ou mais atrds no diciondrio. O processo de estimar a nova
pagina de busca repete-se na parte do diciondrio que pode conter a palavra.

Esse mecanismo de busca sé € aplicdvel porque existe uma ordenagdo possivel das pala-
vras com base na precedéncia das letras no alfabeto (a chamada ordem lexicografica) e esta
ordenacdo ¢ utilizada no diciondrio. Se o diciondrio mantivesse as palavras sem nenhuma or-
dem, esse tipo de busca nio seria possivel. Com base nesse mesmo principio, a busca em um
vetor pode ser melhorada se seu contetido puder ser ordenado. Entretanto, deve-se observar
que nem todos os dominios de dados s@o ordendveis.

O algoritmo de busca binaria utiliza esse principio de busca numa colec¢do ordenada. No
caso, a estimativa que é feita para a posicao a ser buscada € a posi¢cdo mediana do restante do
vetor que ainda precisa ser analisado. No inicio, este “restante” € o vetor completo; assim, a
sua posi¢do central € a primeira a ser analisada. Se seu contetido ndo for a entrada buscada,
analisa-se a metade que resta, ou a inferior (se a chave encontrada tem valor maior que a
procurada) ou a superior (em caso contrdrio). O procedimento assim se repete, até que se
encontre a entrada desejada ou que a busca se esgote sem que esta seja encontrada.

O Algoritmo 2.8 descreve essa forma de busca. Os dois argumentos sdo o vetor 7' e o
elemento que serd utilizado como chave de busca c, cujo tipo é genericamente aqui denotado
como ELEMENT. O retorno € uma indicagao se o elemento estd presente ou ndo nesta colecio.
As varidveis bot, mid e top referem-se a posi¢des no vetor — respectivamente o inicio, o
meio e o fim da drea ainda por ser pesquisada. A notag¢do |z | denota o maior inteiro cujo
valor é menor ou igual a z.

Deve-se observar que a busca bindria assume que os dados da colecdo estdo mantidos
em posi¢des contiguas de memoria, como forma de estimar qual deve ser a préxima posi¢ao
a ser analisada a cada iteragdo do procedimento. Embora conceitualmente nada impeca que
o algoritmo possa ser aplicado a uma lista ordenada, sua implementa¢@o ndo seria eficiente
neste caso.

A biblioteca STL de C++ também traz uma implementacio genérica para o algoritmo de
busca bindria. Como find, os argumentos para binary_search sio os dois iteradores
que definem a faixa de busca e o valor do elemento a ser buscado. O retorno, entretanto, é
apenas um valor booleano: t rue se o valor foi localizado, false caso contrério:

#include <algorithm>

bool result;

2.5. Ordenagao 28

Algoritmo 2.8 Busca binaria em um vetor.
BINARYSEARCH(VECTOR T', ELEMENT c¢)
1 declare bot, mid, top : INTEGER

bot «— 0
top «— T.size() — 1
while bot < top
do mid «— |(bot + top) /2|
if ¢ > T'[mid]
then bot «— mid + 1
else if c < T'[mid]
then top «— mid — 1
else return true
return false

— O 0 0NN AW

—_

result = binary_search(vint.begin(), vint.end(), 12);

A manutenc¢do da ordem em um vetor da-se através de procedimentos auxiliares de orde-
nacdo, uma das dreas relevantes de estudos em estruturas de dados que € descrita na seqiién-
cia.

2.5 Ordenacéo

Procedimentos de ordenacdo trabalham com valores de um dominio no qual uma ordem
parcial pode ser estabelecida entre seus elementos. Em outras palavras, dados dois elementos
e1 € ez, é possivel afirmar se e; < e2 ou ndo. Quando € possivel estabelecer esse tipo de
relacdo entre dois elementos quaisquer de uma colec¢ao, entdo € possivel realizar a ordenacdo
de seus elementos.

Por simplicidade, é assumido nessa apresentacdo que os conteidos que serdo ordena-
dos estdo sempre contidos em memdoria. Os algoritmos de ordenacdo que trabalham com
essa restricdo sdo denominados algoritmos de ordenacao interna. Algoritmos de ordena-
¢do externa manipulam conjuntos de valores que podem estar contidos em arquivos maiores,
armazenados em discos ou outros dispositivos de armazenamento externos a memoria princi-
pal. Os algoritmos de ordenag¢do interna (em memdria) sdo convencionalmente baseados em
estratégias de comparagao (quicksort, heapsort) ou em estratégias de contagem (radixsort).

2.5.1 Algoritmos basicos

Um algoritmo bésico de ordenacdo € o algoritmo de ordenacgdo pela sele¢io do menor
valor (selection sort), que pode ser sucintamente descrito como a seguir. Inicialmente, pro-
cure a entrada que apresenta o menor valor de todo o vetor. Uma vez que seja definido que
posicdo contém esse valor, troque seu conteido com aquele da primeira posi¢do do vetor;
desta forma, o menor valor estard na posicdo correta. Repita entdo o procedimento para o
restante do vetor, excluindo os elementos que ja estdo na posicao correta.

2.5. Ordenagao 29

Esse procedimento é descrito no Algoritmo 2.9, que recebe como argumento o vetor a
ser ordenado. No procedimento, posl é a posicdo sob andlise, a qual ird receber o menor
valor do restante da colecdo; ou seja, as posicdes anteriores a posl ja estdo ordenadas. A
varidvel pos2 varre a parte da colecdo que ainda nao foi ordenada, enquanto a varidvel min
mantém a posicdo na qual foi encontrado o menor valor até o momento.

Algoritmo 2.9 Ordenacgdo de vetor pela selecdo do menor valor.
SELECTIONSORT(VECTOR T')
1 declare min, posl, pos2 : INTEGER
2 for posl — 0to T.size() — 2
3 do min «+ posl
for pos2 «— posl +1to T.size() — 1
do if T'[pos2] < T'[min]
then min «— pos2
T.swap(posl, min)

~N O A

Neste algoritmo, o laco de iteracdo mais externo indica o primeiro elemento no vetor nao
ordenado a ser analisado — no inicio, esse € o seu primeiro elemento. As linhas de 4 a 6
procuram, no restante do vetor, o elemento com menor valor. Na linha 7, o método swap
troca o conteido das duas entradas nas posicdes especificadas — nada é feito se as duas
posicdes indicadas sdo iguais.

O exemplo a seguir ilustra como um pequeno vetor ndo-ordenado é manipulado por este
algoritmo até ser completamente ordenado. Cada linha nesse quadro corresponde ao estado
da colecdo apds a invocagdo do procedimento de troca de posigdes.

(pos) | O 1 2 3 4
Inicial: | 15 8 12 7 10 | posl=0, min=3
1.1 7 8 12 15 10 | posl=1, min=1
2.7 8 12 15 10 | posl=2, min=4
317 8 10 15 12 | posl=3, min=4

Final: | 7 8 10 12 15

Este tipo de algoritmo de ordenacio é razodvel para manipular colecdes com um pequeno
nimero de elementos, mas a medida que esse tamanho cresce o desempenho torna seu uso
invidvel — sua complexidade temporal é O(n?), consegiiéncia do duplo lago de iteracio que
varre o vetor até o final.

H4 outros algoritmos com mesma complexidade temporal mas com pequenas variacdes
de estratégia para ordenagdo. Por exemplo, o algoritmo de ordenacdo da bolha (bubble sort)
percorre a colecdo de elementos trocando a posicdo de dois elementos consecutivos cada
vez que estiverem fora de ordem. Ao final de cada iteracdo, o elemento maior estard no
fim da colecdo e pode ficar fora da préxima rodada; ao mesmo tempo, elementos menores
mover-se-20 em direcao ao inicio da lista.

O seguinte quadro mostra o comportamento do algoritmo da bolha para ordenar a mesma
cole¢@o do exemplo acima. A linha horizontal marca o ponto no qual cada uma das varredu-
ras internas é concluida.

2.5. Ordenagao 30

(pos) | O 1 2 3 4
Inicial: | 15 8 12 7 10
1: 1 8 15 12 7 10 | trocaO,1
2:1 8 12 15 7 10| trocal,?2
3:18 12 7 15 10 | troca2,3
4.1 8 12 7 10 15| troca3,4
508 12 7 10 15]0,10k
6:1 8 7 12 10 15 | trocal,?2
7-1 8 7 10 12 15| troca2,3
8 | 7 8 10 12 15 | trocaO,1
9.7 8 10 12 15| 1,20k
Final: | 7 8 10 12 15| 0,10k

2.5.2 Quicksort

H4, felizmente, outros algoritmos de ordenag@o com melhor comportamento de desem-
penho em situagdes onde a quantidade de elementos cresce. Ainda por meio de comparagdes
entre os elementos, ha algoritmos com complexidade temporal O(n logn).

O algoritmo de ordenagdo quicksort ¢ baseado no principio de “dividir para conquis-
tar:” o conjunto de elementos a ser ordenado € dividido em dois subconjuntos (parti¢des),
que sendo menores irdo requerer menor tempo total de processamento que o conjunto total,
uma vez que o tempo de processamento para a ordenac¢do ndo € linear com a quantidade de
elementos. Em cada particdo criada, o procedimento pode ser aplicado recursivamente, até
um ponto onde o tamanho da particdo seja pequeno o suficiente para que a ordenacio seja re-
alizada de forma direta por outro algoritmo. O ponto critico € definir tais parti¢des de forma
que todos os elementos em uma delas ndo sejam maiores que os elementos na outra parti¢ao.
Deste modo, ao concatenar as particdes ordenadas a colecio inteira estard ordenada.

O Algoritmo 2.10 apresenta uma versdo bdsica do procedimento QUICKSORT. Neste
exemplo, os argumentos da func¢do incluem a indicacao das posi¢des inicial e final, respecti-
vamente init e end, para determinar qual é o segmento do vetor a ser ordenado a cada invo-
cacdo. O ponto critico deste algoritmo estd na forma de realizar a particdo — um elemento
€ escolhido como pivd, ou separador de parti¢des. Neste algoritmo, o pivd é selecionado
sempre como o primeiro elemento do segmento que deve ser ordenado.

O procedimento € recursivo. Apds a determinacdo do elemento pivd e da realizagdo das
trocas de posi¢des para garantir que todos os elementos no segmento a esquerda do pivd sdo
menores que os elementos a direita do pivo, o proprio procedimento QUICKSORT € invocado
para ordenar cada um desses segmentos — o pivd € excluido pois ja foi colocado na posi¢do
correta. O particionamento repete-se até que a condi¢do de parada seja alcancada, quando o
segmento tem no maximo uma posi¢ao, ou seja, init ndo é menor que end.

Neste Algoritmo 2.10, a linha 2 estabelece a condi¢do de parada da recursdo. Se ha
mais de um elemento para ordenar, entdo a varredura deve ser realizada para encontrar a
posicdo correta do pivd, que é mantida na varidvel part. O lago externo, com inicio na
linha 5, € executado até que essa posi¢ao seja encontrada, condi¢do estabelecida na linha 13.
Os dois lagos internos (linhas 6-7 e 8-9) procuram elementos que devem ser trocados para
garantir que todos os elementos no segmento a esquerda nao sdo maiores que os elementos
do segmento a direita do pivd — essa troca € realizada na linha 11. Quando ndo h4 mais

2.5.

Ordenacio

31

Algoritmo 2.10 Ordenacdo de vetor por quicksort.

QUICKSORT(VECTOR T, INTEGER init, INTEGER end)
declare posl, pos2, part :

1
2

(O8]

e <IN B RV I

11
12
13
14
15
16

if init < end

then posl «— init + 1

pos2 — end

while true

INTEGER

do while T'[posl] < T[init] A posl < end
do posl «— posl + 1
while T'[pos2] > T'[init] A\ pos2 > init
do pos2 «— pos2 — 1

if posl < pos2

then T.swap(posl, pos2)

else part « pos2

break

T.swap(init, part)

QUICKSORT(T, init, part — 1)
QUICKSORT(T, part + 1, end)

elementos nessa condi¢do, a posicao correta para o pivd foi encontrada. Neste caso, o pivd é

colocado nessa posicdo (linha 14) e QUICKSORT invocado para cada um dos segmentos.

linhas horizontais delimitam novas invocacdes recursivas do procedimento quicksort:

Considere a aplica¢do do quicksort ao exemplo com os valores (15, 8, 12, 7, 10). As

(pos) | O 1 2 3 4
115 8 12 7 10 | init:0, end:4
part:4 — swap(0,4)
2110 8 12 7 15 | init:0, end:3
2a | 10 8 7 12 15 | swap(2,3)
part: 2 — swap(0,2)
317 8 10 12 15 | init:0, end:1
part:0 — swap(0,0)
417 8 10 12 15 | init:0, end:-1
507 8 10 12 15 | init:1, end:1
6|7 8 10 12 15 | init:3, end:3
717 8 10 12 15 | init:5, end:4

As posi¢des destacadas em negrito sdo aquelas que o quicksort descobriu estarem no lugar
correto, seja porque foi escolhida como pivd (correspondente a posicao part anterior), seja
porque os valores de init e end sdo idénticos na invocacao.
Este algoritmo bésico tem uma deficiéncia evidente se os valores de pivo sdo sempre
menores ou sempre maiores que os demais elementos do vetor — por exemplo, se o vetor
jé estd ordenado. Um melhor desempenho poderia ser obtido obtendo-se o valor médio de
tr€s amostras como ponto de partida para o pivd — por exemplo, entre os valores no inicio,
meio e fim da particdo sob andlise. Dessa forma, haveria melhores chances de obter como

2.5. Ordenagao 32

resultado particdes de tamanhos mais balanceados, caracteristica essencial para atingir um
bom desempenho para esse algoritmo. Outra otimizagao usual € interromper a recursividade
quando o segmento tem poucos elementos, de modo que algum algoritmo mais simples possa
ser utilizado sem prejuizo do desempenho.

Quicksort ¢ um algoritmo rédpido em boa parte dos casos onde aplicado, com complexi-
dade temporal média O(nlogn). Entretanto, no pior caso essa complexidade pode degradar
para O(n?). Mesmo assim, implementagdes genéricas desse algoritmo sdo usualmente su-
portadas em muitos sistemas — por exemplo, pela rotina gsort da biblioteca padrdao da
linguagem C e em versdes antigas da rotina sort da biblioteca de algoritmos de C++. Entre
os principais atrativos de quicksort destacam-se o fato de que na maior parte dos casos sua
execucdo € rapida e de que € possivel implementar a rotina sem necessidade de espago de
memoria adicional.

Outros algoritmos de ordenagdo que apresentam a mesma complexidade temporal que a
média de quicksort, O(nlogn), sdo merge sort, heap sort e introsort.

2.5.3 Radix sort

Existe ainda uma terceira classe de algoritmos de ordenagdo, para os quais a defini¢do da
posicdo ordenada de um elemento se da pela contagem do niimero de elementos com cada
valor e ndo pela sua comparagdo com os demais elementos. O principio basico é simples.
Considere por exemplo uma colecdo de elementos a ordenar onde as chaves podem assumir
N valores diferentes. Cria-se entdo uma tabela com N contadores e varre-se a cole¢do do
inicio ao fim, incrementando-se o contador correspondente a chave i cada vez que esse va-
lor for encontrado. Ao final dessa varredura conhece-se exatamente quantas posi¢des serdo
necessarias para cada valor; os elementos sdo transferidos para as posi¢des corretas na nova
colecdo, agora ordenada.

Claramente, a aplicacdo desse principio basico de contagem a dominios com muitos
valores torna-se invidvel. Por exemplo, se os elementos sdo inteiros de 32 bits, o algoritmo
de contagem bésico precisaria de uma tabela com cerca de quatro bilhdes (232) de contadores.

Radix sort é um algoritmo baseado neste conceito de ordenagéo por contagem que con-
torna este problema ao aplicar o principio da ordenacio por contagem a uma parte da repre-
sentagdo do elemento, a raiz. O procedimento é repetido para a raiz seguinte até que toda
a representacdo dos elementos tenha sido analisada. Por exemplo, a ordenacdo de chaves
inteiras com 32 bits pode ser realizada em quatro passos usando uma raiz de oito bits, sendo
que a tabela de contadores requer apenas 256 (2%) entradas.

O procedimento para execucdo de radix sort é descrito no Algoritmo 2.11. Para essa
descricdo, assumiu-se que elementos do vetor sao inteiros positivos, que serdo analisados em
blocos de R bits a cada passo. As varidveis internas ao procedimento sao pass, que controla
o nimero de passos executados e também qual parte do elemento estd sob andlise, iniciando
pelos R bits menos significativos; pos, que indica qual posicdo do vetor estd sob andlise;
radixzV alue, o valor da parte do elemento (entre 0 e of _ 1) no passo atual; count, a tabela
de contadores; e T,,x, uma copia do vetor ordenado segundo a raiz sob andlise ao final de
cada passo. A notac@o x| denota o menor inteiro cujo valor € maior ou igual a x.

O lago mais externo do algoritmo RADIXSORT (linhas 4 a 16) € repetido tantas vezes
quantas forem necessdrias para que a chave toda seja analisada em blocos de tamanho R
bits. Utiliza-se na linha 4 um operador SIZEOFBITS para determinar o tamanho do elemento

2.5. Ordenagao 33

Algoritmo 2.11 Ordenacao de vetor por radixsort.
RADIXSORT(VECTOR T, INTEGER R)
1 declare pass, pos, radixValue : INTEGER

2 declare count : array[2f] of INTEGER
3 declare 7T,,x : VECTOR
4 for pass < 1 to [SIZEOFBITS(INTEGER)/R]|
5 do for radizValue — 0to 2% — 1
6 do count[radizV alue] <+ 0
7 for pos — 0 to T.size() — 1
8 do radizValue « (T[pos] >> (R x (pass — 1))) & (2% — 1)
9 count[radizV alue] — countlradixValue] + 1
10 for radizValue «— 1to 28 — 1
11 do count[radizV alue] <« count|radizV alue] + count[radizV alue — 1]
12 for pos < T.size() —1to 0
13 do radizValue « (T[pos] >> (R x (pass — 1))) & (2 — 1)
14 Taux|[count|radixV alue] — 1] < T[pos]
15 count[radizV alue] «— countlradizValue] — 1
16 T — Thux

em bits. Em C ou C++, este seria implementado com o operador sizeof, que retorna o
tamanho do tipo em bytes, e a informagdo sobre quantos bits hd em um byte.

O primeiro lago interno do algoritmo (linhas 5 e 6) simplesmente inicializa o arranjo de
contadores, pois este serd reutilizado em todos os demais passos do lago. No lagco seguinte
(linhas 7 a 9), o vetor é percorrido para avaliar o valor da raiz em cada posicdo (linha 8,
usando os operadores bindrios SHIFT, >> e AND, &) e assim atualizar a contagem de valores
(linha 9).

Na seqiiéncia (linhas 10 e 11), gera-se a soma acumulada de contadores, o que permite
avaliar quantas chaves com raiz de valor menor que o indicado existem. Essa informacgao
permitird que, no préximo laco (linhas 12 a 15), o vetor auxiliar T, seja preenchido co-
locando cada entrada do vetor 7" na nova posicdo que lhe corresponde segundo esse valor
de raiz; cada vez que uma entrada é colocada na tabela, o valor do contador associado deve
ser decrementado (linha 15) para que o elemento com a préxima raiz de mesmo valor seja
colocada na posi¢do correta, anterior a Ultima ocupada.

Finalmente, o vetor 1" recebe a tabela ordenada segundo a raiz e o procedimento ¢é re-
petido para o bloco de bits seguinte da chave. Apds a varredura do dltimo bloco (o mais
significativo), o vetor estard completamente ordenada.

Considere novamente o exemplo do vetor com os elementos (15, 8, 12, 7, 10). Para o
exemplo da ordenagdo com radix sort, serd utilizada a representag@o bindria sem sinal com
quatro bits e uma raiz de dois bits:

2.5. Ordenagao 34

pos | valor | bindrio
0 15| 11.11
1 8| 10.00
2 12 | 11.00
3 7| Ol.11
4 10 | 10.10

Neste caso, a tabela de contadores tem apenas quatro valores e o algoritmo estard com-
pleto em dois passos. Ao final da execucdo da linha 11, no primeiro passo, essa tabela terd
os seguintes valores:

raiz | linhas 7-9 | linhas 10-11
0 2 2
1 0 2
2 1 3
3 2 5

Ainda no passo 1, a execugao das linhas 12—15 cria o vetor T, que serd o vetor I' para
0 passo 2. A primeira posi¢do a ser analisada € a 4, pois a varredura do vetor nesse laco é do
final para o inicio. O valor dessa posi¢do € 10 mas, na raiz (dois bits menos significativos),
o valor 2 € analisado. Na tabela de contadores a contagem acumulada associada ao valor 2 é
3; portanto, o valor 10 deve ocupar a posi¢do 2 do novo vetor e o contador € decrementado
para 2. O processo se repete para a proxima posicao (em ordem reversa), ou seja, o valor na
posicdo 3, que € 7. Na raiz desse passo, o contador para o valor 3 é analisado e 7 ocupard a
posicdo 4 do novo vetor. O contador entdo é decrementado para 4, de forma que o préximo
valor que tiver raiz 3 ird ocupar a posicao 3.

Ao final desse processo de transferéncia dos valores para o novo vetor, ao final do passo
o vetor 1" terd os elementos na ordem (8, 12, 10, 15, 7) — que estaria ordenado se apenas 0s
dois bits menos significativos fossem considerados. O passo 2 ird verificar os dois bits mais
significativos nesse novo vetor. Como no passo 1, a tabela de contadores ¢ calculada e, ao
final da linha 11, terd o contetido:

raiz | linhas 7-9 | linhas 10-11
0 0 0
1 1 1
2 2 3
3 2 5

A execucdo das linhas 12-15 no segundo passo leva todos os elementos do vetor para a
posicao correta no novo Ty yx.

Este algoritmo requer, para seu correto funcionamento, que a ordenacgdo utilizada em
cada etapa intermedidria seja estdvel, ou seja, que dois elementos com mesmo valor mante-
nham suas posicdes relativas na nova seqii€ncia ordenada. Radix sort € um algoritmo rapido,
mas apresenta como principal desvantagem a necessidade de espago adicional de memoria —
uma area do mesmo tamanho ocupado pelo conjunto de elementos sendo ordenado € neces-
séria para receber os dados re-ordenados apds cada contagem. Quando o espaco de memoria
ndo é um recurso limitante, radix sort € um algoritmo atrativo, com complexidade temporal
linear O(n).

2.5. Ordenagao 35

2.5.4 Ordenacao em STL

A biblioteca STL oferece uma implementacao de um algoritmo genérico para ordenagdo
de valores de uma colecdo. Para usar a fungdo sort, é preciso especificar a faixa da colecdo
a ser ordenada por meio de dois iteradores, um para o inicio e outro para o final. Por exemplo,
para ordenar o vetor vint:

#include <algorithm>

sort (vint.begin(), vint.end());
A mesma fung¢do pode ser aplicada para a ordenagdo de arranjos. Por exemplo:

int arr[10];

sort (arr, arr+10);

A func@o sort ndo tem valor de retorno. A implementacio usada por STL, baseada no
algoritmo introsort, garante que a complexidade temporal é O(n logn) tanto no caso médio
COmo No pior caso.

Para estruturas do tipo 11ist, a ordenagdo € realizada por meio de um método da classe
e ndo pelo algoritmo genérico da biblioteca STL. Por exemplo, a execucdo do fragmento de
codigo

list<int> lista;

for (int pos=0; pos<l1l0; ++pos)
lista.push_front (pos);

list<int>::iterator itl;

cout << "Inicial: ";
for (itl=lista.begin(); itl != lista.end(); ++itl)
cout << *itl << " ",

lista.sort ();

cout << endl << "Final: ";
for (itl=lista.begin(); itl != lista.end(); ++itl)
cout << *itl << " ",

cout << endl;
resulta em

6543210
456789

STL tem também um adaptador de estrutura linear, priority_gqueue, que usa inter-
namente o conceito de ordenacdo. As operacdes oferecidas sdo as mesmas de queue, mas

com os elementos de maior valor sendo mantidos no topo da fila.

oo

Capitulo

Estruturas associativas

Estruturas associativas sdo aquelas que permitem o acesso a seus elementos de forma
independente de sua posicdo, com base apenas no seu valor. Em alguns casos, ndo € o valor
do elemento completo que € utilizado, mas apenas uma parte dele; neste caso, essa parte é
conhecida como chave.

Este tipo de estrutura € a base conceitual para a construcao de tabelas, peca de fundamen-
tal importancia para o desenvolvimento de soffware de sistema. Um de seus usos principais é
na construcio de tabelas de simbolos, amplamente utilizadas em compiladores ¢ montadores.
Tabelas sao também amplamente utilizadas em sistemas operacionais para a manutencgdo de
informacao de apoio a execugdo de programas, como as tabelas de processos e as tabelas de
arquivos.

3.1 set

Um conjunto é uma estrutura associativa que mantém elementos sem que haja repeticao
de valores. Desse modo, esta estrutura busca representar o conceito matemético de conjuntos.
Na biblioteca STL, conjunto é implementado pela classe set:

#include <set>

set<int> conj;

A implementacdo de set mantém os valores ordenados. Se o tipo de contetido do con-
junto for uma classe definida pelo usudrio, entdo € preciso informar um segundo parametro
na declaragd@o do conjunto, que € a fungdo de comparagdo. Entretanto, se a classe ja tiver uma
defini¢do para o operador menor que (<), este serd utilizado quando o segundo pardmetro é
omitido.

Os métodos bdsicos que podem ser utilizados com os elementos de um conjunto sio
essencialmente os mesmos que podem ser usados por uma estrutura linear: size e empty
para avaliar a quantidade de elementos na colecdo, begin e end para obter iteradores para
varrer o conteido da estrutura.

A insercdo de elementos no set é feita com o método insert. Como ndo hi elementos
repetidos, a inser¢do ocorre apenas se o elemento ndo esta presente na colecdo ainda. Na

3.1. set 37

forma bésica, o método recebe apenas um argumento com o valor a ser armazenado:

conj.insert

~e

conj.insert

~e

(
conj.insert (
(
(

conj.insert

~.

set<int>::iterator its;

its = conj.begin();

while (its != conj.end()) {
cout << *its << " ",
its++;

Para este exemplo, o resultado apresentado é
11 55 99

O retorno desta forma do método insert, ignorado neste exemplo, é um par de ele-
mentos: um iterador, que indica a posicdo na qual o elemento estd armazenado, e um valor
booleano que sinaliza se o valor foi armazenado nesta invocacdo. Pares de elementos em
C++ sdo definidos pela classe parametrizada pair, com elementos first e second:

int x;
pair<set<int>::iterator, bool> res;

res = conj.insert (x);
if (! res.second)
cout << xres.first << " repetido!" << endl;

Outra opg¢do para este método recebe dois argumentos, um iterador com a sugestdo para
a posic¢ao da inserc¢do e outro com o valor a ser armazenado. O retorno, neste caso, ¢ apenas
o iterador para a posi¢do efetiva na qual o elemento foi (ou estava) armazenado.

Para descobrir se um objeto faz ou ndo parte da colecdo, o método f£ind é utilizado.
Diferentemente do que foi apresentado para as estruturas lineares, neste caso £ind é uma
funcdo membro da classe e ndo o algoritmo genérico de STL. Recebe apenas um argumento,
o valor a ser buscado, e retorna o iterador posicionado no elemento encontrado:

set<int>::iterator result;
result = conj.find(25);

O método retorna o iterador para o final da colecdo (0o mesmo que end retorna) se o valor
ndo estd na cole¢do. A busca é executada com complexidade temporal O(logn).

Além desses métodos da classe set, a biblioteca STL de C++ oferece fungdes genéricas
que implementam operagdes para conjuntos, tais como unido (set_union) e intersecio
(set_intersection). Tais fungdes recebem como argumentos iteradores e trabalham
sobre qualquer tipo de colegcdo que esteja ordenada, ndo apenas com objetos da classe set.
Os dois primeiros iteradores indicam o inicio e o fim da primeira colecdo ordenada, os dois

3.2. map 38

iteradores seguintes, o inicio e o fim da segunda colecdo, e o quinto argumento é o iterador
para o inicio da colec¢do na qual o resultado serd armazenado.

Além de conjuntos implementados com set, STL oferece uma estrutura alternativa,
multiset, que tem as mesmas operacdes mas permite a duplicacdo de elementos com
mesmo valor:

#include <set>

multiset<int> bag;

O método count, também presente na interface de set, retorna a quantidade de vezes
que um determinado elemento aparece na colecdo. O método equal_range retorna um
par de iteradores que delimitam o segmento da colecdo que contém elementos do mesmo
valor.

Uma revisao do padrido da linguagem C++ pretende incorporar a biblioteca STL duas
outras classes para manipular conjuntos cujas chaves nio sejam ordenadas. Essas classes sdo
unordered_set, para colegdes sem elementos repetidos, e unordered_multiset,
para cole¢des que podem conter elementos repetidos. Embora ndo sejam parte do padrio,
algumas implementa¢des da STL feitas por diferentes distribuidores de compiladores C++
ja oferecem classes com funcionalidade equivalente, como as classes hash_set e hash_
multiset disponibilizadas inicialmente na STL do compilador da empresa SGI e depois
incorporada também aos compiladores g++ ¢ Visual C++.

3.2 map

Um mapa € uma estrutura associativa na qual os elementos armazenados estdo organi-
zados na forma de pares (chave, valor), de tal forma que € possivel ter acesso a valor (que
pode eventualmente ser um objeto com uma estrutura complexa) a partir da chave. Concei-
tualmente, um mapa pode ser visualizado como uma tabela (Figura 3.1). Assim, é possivel
obter o valor def a partir da especifica¢do da chave (3, ou o valor xy z a partir de (.

Figura 3.1 Visdo conceitual de uma tabela.

chave valor
o abc
p def
* ghi

R N T VA N
i

g YT

Uma tabela de simbolos, utilizada em compiladores para manter a informacfo sobre
cada varidvel de um programa, ¢ um exemplo de uma possivel aplicacdo de uma estrutura
do tipo mapa. Neste caso, a chave € usualmente o nome de uma varidvel e o valor é o
conjunto de informagdes sobre a varidvel, tais como o seu tipo, endereco de memoria e local

3.2. map 39

de definicdo. J4 em uma tabela de arquivos, uma estrutura utilizada pelo sistema operacional
para manter a informacdo sobre cada um dos arquivos associados a um processo, a chave
pode ser um identificador inteiro (por exemplo, o terceiro arquivo aberto pelo processo) e o
valor o conjunto de informagdes sobre o arquivo, tais como a posi¢cdo corrente no arquivo.

Em C++, a biblioteca STL implementa mapas com a classe map. A declaracdo de uma
colecdo deste tipo especifica dois pardmetros, o primeiro para o tipo da chave e o segundo
para o tipo do valor:

#include <map>
#include <string>

map<string, int> compras;

Neste exemplo, a chave € uma string e o valor associado é um inteiro.
Para operar com os elementos de um mapa, o operador [] é sobrecarregado. Por exem-
plo, para associar o valor 6 a chave vinho, basta utilizar a expressao:

compras["vinho"] = 6;

Do mesmo modo, para obter o valor associado a uma chave, o0 mesmo operador pode ser
utilizado:

int quantidade = compras["vinho"];

Além da sobrecarga desse operador, os métodos basicos presentes nos outros tipos de
estrutura (como empty € size) também estdo disponiveis para mapas.

Iteradores para cole¢des do tipo map percorrem elementos que sdo pares, com O primeiro
elemento correspondente a chave e o segundo, ao valor:

map<string,int>::iterator itm;
itm = compras.begin();

while (itm != compras.end()) {
cout << (*itm).first << ": " ;
cout << (%itm) .second << endl;
itm++;

A estrutura map ndo admite duplicag@o de chaves; STL oferece também uma implemen-
tacdo multimap, na qual as chaves podem ser repetidas:

finclude <map>
#include <string>

multimap<string, int> mm;

Como paramultiset, count retorna a quantidade de elementos com a chave especifi-
cadae equal_range retorna um par de iteradores para o segmento da colecdo que contém
os elementos com a mesma chave, especificada como argumento.

3.3. Aspectos de implementagio 40

Da mesma forma que para set e multiset, a manutencdo de cole¢des do tipo mapa
cujas chaves possam ser mantidas independentemente de ordenagdo é suportada em algu-
mas implementacdes de STL por meio das classes ndo padronizadas hash_map e hash__
multimap. Na revisdo da especificacdo de STL, as correspondentes classes unordered__
map e unordered_multimap deverdo ser incorporadas ao padrao.

3.3 Aspectos de implementacao

As estratégias de implementacao apresentadas nesta secio sdo amplamente utilizadas em
estruturas de dados; a STL as aplica na constru¢@o das suas classes que implementam as co-
lecdes associativas. Arvores sdo utilizadas na implementagdo das classes que implementam
estruturas associativas, set e map, € em suas versdes que permitem repeti¢cdes, multiset
emultimap.

No entanto, para cada uma dessas classes existe uma versdo que oferece exatamente o
mesmo conjunto de operacdes mas que utiliza hashing para a implementacdo: hash_set,
hash_map, hash_multiset e hash_multimap. Essas classes, presentes em diversas
implementacdes de STL apesar de ndo serem parte do padrao atual da linguagem, permitem
a manutencdo de valores ou de chaves independentemente de critérios de ordenagio.

3.3.1 Arvores

Uma arvore € uma estrutura que contém um conjunto finito de um ou mais elementos,
usualmente denominados nés, sendo que um desses nds € especialmente designado como o
no raiz. O no raiz é o ponto de entrada para a estrutura. Associado a cada né podem estar
associados 0 ou mais subconjuntos disjuntos de nds, tal que cada um desses conjuntos € em
si uma arvore, denominada sub-arvore.

A representacdo esquemadtica de arvores usualmente coloca a raiz no topo, com a arvore
crescendo para baixo, como apresentado na Figura 3.2. Neste exemplo, nd/ € araiz da drvore
e este nd tem trés sub-arvores. A primeira sub-arvore tem trés nds, sendo o ndé2 a raiz dessa
sub-drvore. A segunda sub-4rvore tem apenas um nd, né3, que € a raiz da sub-drvore e nao
tem nenhuma sub-4rvore. A terceira sub-drvore tem quatro nds, com ndé4 como raiz.

Figura 3.2 Representagio grafica de uma arvore.

O niimero de sub-drvores de um né é o grau do nd. No exemplo, o né nél tem grau 3;

3.3. Aspectos de implementagio 41

no2, 2; e no3 tem grau 0. O grau da arvore € o maior valor de grau de né entre todos os
nés da arvore; no exemplo, a arvore tem grau 3. Um né que nédo tem sub-arvores, ou seja,
cujo grau é 0, é normalmente denominado né folha da arvore. No exemplo da Figura 3.2, a
arvore tem seis folhas: nd3, né5, né6, no7, né8, né9. Os nds raizes das sub-arvores de um
n6 sdo usualmente chamados de nés filhos desse n6, que recebe também o nome de né pai
daqueles nés. No exemplo, no5 e né6 sao filhos do né2; o no4 € pai dos nés né7, né8, né9.
A estrutura de uma drvore € hierdrquica, ou seja, cada né tem apenas um né pai.

Sob o ponto de vista de implementacdo, a estrutura de drvore pode ser visualizada como
uma extensdo de uma lista ligada na qual um n6 pode ter mais de um sucessor (Figura 3.3).

Figura 3.3 Representacdo esquematica de uma implementacio de arvore.

ne na
info
[@ a
info info info
A f=RE<t
hé n ni nd hé n
info info info
T L I T
ng n2 g ns nanvy

A Figura 3.3 ilustra um exemplo de uma arvore 7', que tem o no raiz n3 e as sub-arvores
Th, To e T3. A sub-arvore T3 tem o nd raiz nl e nao contém sub-arvores; sub-arvore 7o tem
0 no raiz n4 e sub-arvores Ty e T5; e a sub-arvore T3 tem o né raiz n6 e sub-arvore Ti. No
préximo nivel, as sub-drvores Ty, T5 e T t€m respectivamente os nds raizes n2, nb e n7 e
ndo tém sub-arvores.

Um tipo especial de arvore € a arvore binaria. Uma édrvore bindria tem um né raiz e
no maximo duas sub-arvores, uma sub-arvore esquerda e uma sub-arvore direita. Em decor-
réncia dessa defini¢do, o grau de uma 4rvore bindria é limitado a dois. A Figura 3.4 ilustra
alguns exemplos de 4rvores bindrias.

Observe na figura que 7'1 e 12 sdo drvores bindrias distintas pois, ao contrdrio da defini-
¢do genérica de arvores, ha diferenca de tratamento para a arvore bindria entre a sub-drvore
direita e a sub-drvore esquerda. Outra diferenca de defini¢cdo para drvores bindrias € que elas
podem eventualmente ser vazias, algo que a definicdo de drvore genérica nao permite. 73 é
uma arvore bindria degradada (equivalente a uma lista linear), enquanto 7'4 € uma arvore bi-
ndria completa e balanceada, ou seja, na qual as sub-drvores tem igual tamanho. A inser¢do
de mais um né a T4 for¢cosamente implicaria na adi¢do de mais um nivel a arvore, o que a
transformaria numa drvore bindria incompleta — ou seja, haveria a possibilidade de incluir
mais nds sem alterar a altura da arvore. No entanto, a arvore ainda seria balanceada, pois
uma diferenca maxima de um nivel entre as alturas das sub-4rvores é aceitdvel.

Uma das principais aplicagdes de arvores é a manutengao de estruturas nas quais a ordem
¢ importante. Para manter a ordem dos nds de uma arvore bindria, trés estratégias podem ser

3.3. Aspectos de implementagio 42

Figura 3.4 Arvores bindrias

Lk T2 T3 T4
(B (B

utilizadas:

Pré-ordem ¢ a estratégia de varredura de uma arvore bindria na qual o primeiro né é o
no raiz, seguido pela sub-drvore esquerda em pré-ordem e finalmente pela sub-arvore
direita em pré-ordem;

Intra-ordem ¢ a estratégia de varredura de arvore bindria na qual 1é-se primeiro a sub-arvore
esquerda em intra-ordem, seguido pelo né raiz e finalmente pela sub-arvore direita em
intra-ordem;

Pés-ordem ¢ a estratégia de varredura na qual primeiro 1&-se os nés da sub-arvore esquerda
em pés-ordem, depois 0s nds da sub-arvore direita em pds-ordem e finalmente o néd
raiz.

Aplicando essas estratégias a arvore 7'4 (Figura 3.4), com pré-ordem a seqiiéncia de nds
da arvore seria A, B, D, E, C, F, G; com intra-ordem, D, B, E, A, F, C, G; e com a p6s-ordem,
D,E,B,F G, C, A.

A estratégia intra-ordem € usualmente utilizada para a manutencdo de colegdes orde-
nadas por valores. Todos os valores na sub-drvore esquerda de um né precedem o valor
armazenado nesta raiz; similarmente, todos os valores na sub-arvore direita sdo maiores que
esse valor. Deste modo, a busca por um valor na 4rvore inicia-se pelo n6 raiz. Se o valor
armazenado for igual ao buscado, encerra-se a busca. Caso o valor buscado seja menor que
a raiz, a busca € repetida na sub-drvore esquerda; caso seja maior, na sub-arvore direita. As
outras estratégias de varredura sdo utilizadas no processamento da representacio interna de
comandos em compiladores, por meio das arvores sintaticas.

Para inserir um novo valor na arvore bindria, estratégia similar é utilizada. Se a arvore
estiver vazia, o elemento € inserido na raiz. Caso a raiz exista, o elemento € inserido na sub-
arvore esquerda, se seu valor for menor ou igual aquela armazenado na raiz, ou na sub-arvore
direita, caso contrdrio. Ao aplicar recursivamente essa estratégia de armazenamento, o local
correto para o elemento é encontrado.

A busca por um elemento em uma drvore tem tempo proporcional a altura da arvore,
ou seja, tem complexidade temporal O(logn). Para que essas buscas sejam eficientes, é

3.3. Aspectos de implementagio 43

importante que a drvore esteja balanceada — caso contrdrio, uma busca na drvore poderia
degradar para O(n) no pior caso. Na pratica, implementacdes de drvores como em STL
utilizam estruturas de 4rvores bindrias auto-balanceadas, que realizam transformagdes na
arvore de forma a garantir que a estrutura esteja sempre balanceada. Implementagdes usuais
de 4rvores auto-balanceadas incluem arvores AVL e drvores vermelho-preto.

3.3.2 Tabelas hash

Em colecgdes associativas mantidas com estrutura de rvore, a busca por um elemento ou
uma chave ocorre sempre através de comparacdes a partir do elemento raiz. Uma estrutura
alternativa para colecdes associativas ¢ manter os elementos em um mapa ou tabela, no qual a
posicdo de cada elemento possa ser determinada diretamente a partir de seu valor ou do valor
de sua chave. Uma estrutura desse tipo € denominada tabela hash. A func¢io que transforma
o valor do elemento ou da chave para um inteiro, que é a posi¢io do elemento na tabela hash,
€ chamada funcio de hashing.

Tabelas hash sdo estruturas de acesso direto. Numa tabela hash ideal, o tempo de acesso
a qualquer elemento independente da quantidade de elementos — & constante, pois depende
apenas do tempo necessario para o computo da funcio de hashing. Portanto, a complexidade
temporal de acesso a tabelas hash ¢ O(1).

A Figura 3.5 ilustra o conceito de operacdo da tabela hash. Neste caso, a tabela permite
o armazenamento de até oito entradas, nas posi¢des de 0 a 7. Os elementos sdo strings e a
funcdo de hashing adotada, a titulo de ilustragao, é simplesmente o tamanho da string:

int h(string s) {
return s.size();

Figura 3.5 Tabela hash

Manoel

0
1
2
3
41 |odo
=]
5]
7

E evidente que essa fungio de hashing impde um limite ao dominio de elementos que
podem ser armazenados na cole¢do — por exemplo, h(Gumercindo)=10, que indicaria uma
posicao inexistente na tabela. H4 também uma posicao, a primeira, que nunca seria ocupada
por nenhum elemento.

3.3. Aspectos de implementagio 44

Fungdes de hashing devem ter como contra-dominio posi¢des vélidas na tabela. Um dos
métodos utilizados para alcangar esse objetivo é o chamado método da divisao. Nesse tipo
de funcio, o elemento tem seu valor inicialmente transformado para um valor inteiro positivo
qualquer, sem limita¢do. Esse valor é entdo dividido por M, o nimero de posi¢cdes na tabela.
O resto dessa divisao é um valor entre 0 e M — 1, que é uma posicao vélida na tabela. No
exemplo acima, a func¢do de hashing calculada usando esse método seria:

int h(string s) {
return s.size() % 8;

}

Com essa fung¢do, o elemento Gumercindo seria mapeado para a posi¢do 2 da tabela.

Como € possivel perceber desse pequeno exemplo, a tabela hash combina aspectos da
alocagdo contigua com a alocacdo ndo-contigua. Por um lado, o espaco total da tabela hash
¢é alocado previamente e ocupa uma drea contigua. Por outro lado, a ocupacio da tabela ndo
€ contigua, pois a posi¢do de cada n6 depende da aplicagdo da fungdo hash — assim, pode
haver espacos desocupados entre dois elementos da colegao.

Idealmente, cada chave processada por uma fungdo de hashing gera uma posicdo dife-
rente na tabela. No entanto, na pratica existem sinénimos — chaves distintas que resultam
em um mesmo valor da fun¢do de hashing. Quando duas ou mais chaves sindnimas sdo
mapeadas para a mesma posi¢do da tabela, diz-se que ocorre uma colisao. Obviamente, co-
lisdes degradam o desempenho de busca e de armazenamento em uma tabela hash. Por esse
motivo, a escolha de boas fungdes de hashing € essencial — certamente, o tamanho da string
ndo é uma boa escolha.

Uma boa funcdo hash deve apresentar duas propriedades bésicas: seu cdlculo deve ser
rapido e deve gerar poucas colisdes. Além disso, é desejavel que ela leve a uma ocupagio
uniforme da tabela para conjuntos de chaves quaisquer. No caso do método da divisdo, uma
recomendacdo € que o tamanho da tabela seja um nimero primo.

Outro método aplicado para restringir um valor numérico arbitrario para uma posicao em
uma tabela cuja dimenséo € uma poténcia de 2 é o método do meio do quadrado. Nesse
tipo de funcdo, o valor inteiro obtido a partir do valor do elemento ou chave € elevado ao
quadrado. Os 7 bits no meio da representagdo bindria do valor resultante sdo utilizados como
o endereco em uma tabela com 2" posicdes.

A titulo de ilustracdo, considere ainda o exemplo acima, no qual o valor inteiro inicial
associado ao elemento é simplesmente a dimensdo da string. Considere adicionalmente que
o dominio de entrada ndo tem strings maiores que 11 caracteres, de modo que 7 bits sdo
suficientes para a representacdo bindria do quadrado desse valor. O elemento Jodo seria
coincidentemente mapeado para a posi¢io 4, pois 42> = 16, cujos trés bits do meio da repre-
sentagdo bindria (0010000) representam o valor 4. J4 os elementos Manoel e Gumercindo
seriam ambos mapeados para a posigio 1, pois 6 = 36 tem representagio bindria 0100100
(trés bits do meio: 001) e 102 = 100 tem representagio bindria 1100100, com 0s mesmos
trés bits 001 no meio.

Uma técnica usual para produzir valores inteiros a partir de elementos de qualquer tipo e
que sejam menos previsiveis do que o exemplo acima, do comprimento da string, € a técnica
de folding. Nessa técnica, a representacdo do elemento € dividida em segmentos de igual
tamanho (exceto por um segmento, eventualmente) e cada um deles € interpretado como um

3.3. Aspectos de implementagio 45

valor inteiro. A soma ou outra operacdo de combinacdo de todos os valores assim obtidos
serd a entrada para a funcdo de hashing.

Considere a aplicacdo da técnica de folding para gerar um valor inteiro associado a string
Manoel do exemplo acima. Uma estratégia usual para tratamento de strings nessa técnica é
utilizar o valor ASCII de cada cardter como unidade de segmentagdo. Para essa string:

Carater | Hexadecimal | Decimal
M 4D 77
a 61 97
n 6E 110
0 6F 111
e 65 101
1 6C 108

Se a soma € utilizada como funcio para combinar os valores dos segmentos, entao o valor
inteiro que seria gerado como entrada para o método da divisdo ou do meio do quadrado seria
77+ 97+ 110+ 111 4+ 101 4 108 = 604. Outra funcdo usual para a combinagio € a fungio
bindria ou exclusivo (XOR), que pode ser aplicado a segmentos de um ou mais bytes. Por
exemplo, aplicada a segmentos de um byte para a mesma string, o valor resultante seria 36.

Como deve ter ficado evidente a partir dos exemplos apresentados, o processamento de
tabelas hash deve prever algum mecanismo para o tratamento de colisdes. As formas mais
usuais de tratamento de colisdo sdo por enderecamento aberto ou por encadeamento.

Na técnica de tratamento de colisdo por enderecamento aberto, a estratégia € utilizar
o préprio espago da tabela que ainda nio foi ocupado para armazenar a chave que gerou
a colisdo. Quando a funcio hash gera para uma chave uma posi¢cdo que ja estd ocupada,
o procedimento de armazenamento verifica se a posi¢do seguinte também estd ocupada; se
estiver ocupada, verifica a posicdo seguinte e assim por diante, até encontrar uma posi¢ao
livre. A entrada € entdo armazenada nessa posicao.

Considere o exemplo da aplicagdao do método do meio do quadrado com a dimensao da
string, no qual os elementos Manoel e Gumercindo foram mapeados para a mesma posi¢cao
(1). Se Manoel foi inserido na tabela antes de qualquer outro elemento mapeado para a
mesma posi¢cdo, entdo ird ocupar a posicdo 1. Quando o elemento Gumercindo for inserido
na tabela, vai encontrar a posi¢do 1 ocupada pelo elemento Manoel. Entdo ird ocupar a
posicdo 2, se estiver livre.

Nesse tipo de tratamento, considera-se a tabela como uma estrutura circular, onde a pri-
meira posi¢cao sucede a dltima posicdo. Se a busca por uma posicao livre retorna a posi¢ao
inicialmente determinada pela fun¢do de hashing, entdo a capacidade da tabela estd esgotada
e uma mensagem de erro é gerada.

No momento da busca, essa varredura da tabela pode ser novamente necessaria. Se a
chave buscada ndo estd na posicdo indicada pela funcdo de hashing e aquela posi¢cdo estd
ocupada, a chave pode eventualmente estar em outra posi¢ao na tabela. Assim, é necessario
verificar se a chave ndo estd na posi¢cdo seguinte. Se, por sua vez, essa posi¢do estiver ocu-
pada com outra chave, a busca continua na posicio seguinte e assim por diante, até que se
encontre a chave buscada ou uma posicao livre.

Na técnica de tratamento de colisdo por encadeamento, para cada posicdo onde ocorre
colisdo cria-se uma area de armazenamento auxiliar, externa a area inicial da tabela hash.

3.3. Aspectos de implementagio 46

Normalmente essa drea € organizada como uma lista ligada que contém todas os elementos
que foram mapeados para a mesma posi¢cao da tabela. No momento da busca, se a posi¢do
correspondente ao elemento na tabela estiver ocupada por outro elemento, é preciso percorrer
apenas a lista ligada correspondente aquela posicdo até encontrar o elemento buscado ou
alcangar o final da lista.

Hashing € uma técnica simples e amplamente utilizada na programacdo de sistemas.
Quando a tabela hash tem tamanho adequado ao nimero de chaves que ird armazenar e a
funcdo de hashing utilizada é de boa qualidade, a estratégia de manipulacdo por hashing é
bastante eficiente.

A grande vantagem na utilizacdo da tabela hash estd no desempenho — enquanto a busca
linear tem complexidade temporal O(IV) e a busca bindria ou em drvores tem complexidade
O(log N), o tempo de busca na tabela hash é praticamente independente do ndmero de cha-
ves armazenadas na tabela, ou seja, tem complexidade temporal O(1). Outro aspecto impor-
tante é que as estratégias mais eficientes baseadas em comparag@o, com colecdes ordenadas
ou arvores bindrias, demandam que o conjunto de valores assumido pelos elementos ou cha-
ves seja ordendvel, algo que ndo € necessdrio em hashing. No entanto, o desempenho de
hashing pode degradar sensivelmente em situagdes nas quais um grande nimero de colisdes
pode ocorrer — em situagdes extremas, chegar até O(n).

Capitulo

Representacao interna de valores

Os valores simbdlicos, caracteres ou constantes numéricas, apresentados em expressoes
nos arquivos dos programas, precisam ser convertidos para representagdes bindrias adequa-
das ao processador que ird usar esses argumentos em suas operagdes. Aqui sao apresentadas
as representagdes padrdes utilizadas para esses simbolos.

4.1 Representacao de caracteres

A seguinte tabela apresenta a representacio dos 128 caracteres iniciais associados a re-
presentagdo ASCII e ISO8859-1.

Cod |0x-0 Ox-1 Ox-2 0x-3 0x-4 Ox-5 O0x-6 Ox-7 0x-8 O0x-9 Ox-A O0x-B Ox-C O0x-D Ox-E Ox-F
0x0- [NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO S
Ox1- |DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
0x2- | [esp] ! " # $ % & ‘ () * + , - . /
0x3- |0 1 2 3 4 5 6 7 8 9 : ; < = > ?
0x4- @ A B C D E F G H | J K L M N (6]
0x5- | P Q R S T u \ W X Y Z [\ | ~ _
0x6- | a b c d e f g h i j k I m n o]
0x7- | p q r s t u \ w X y z { \ } ~ DEL

4.2 Representacdo numeérica binaria

Inteiros sem sinal t€ém uma representagcdo computacional (em nimeros bindrios) equiva-
lente a representacdo usual para nimeros decimais, ou seja, através da atribuicdo de pesos
associados a posicao de cada bit. Grande parte dos computadores atuais utilizam 32 bits para
representar nimeros inteiros, o que permite representar 4.924.967.296 valores distintos. (A
geracao mais recente de computadores suporta também inteiros com 64 bits.) Uma seqiiéncia
bindria

Sn—18n—25n—3 - - - 525150

48

esta associada ao valor inteiro
n—1
E S; 2
i=0

onde s; € {0,1}. O bit s,,_; é chamado bit mais significativo (MSB), enquanto que sy é o
bit menos significativo (LSB).

A representagdo de inteiros com sinal pode usar outros formatos. A forma mais basica
é a representacdo em sinal e magnitude, onde o bit mais significativo denota o sinal associ-
ado ao restante da seqii€ncia (s,—1 = 1 indicaria que o nimero é negativo). Este formato
tem a desvantagem de ter duas representacdes diferentes para o valor zero, além de ter cir-
cuitos complicados para suportar operacdes bdsicas, diferenciando adi¢do de subtracdo, por
exemplo.

Outra formato suportado para representar inteiros com sinal é a representagdo em com-
plemento de um. A representagdo para um niimero negativo neste formato pode ser obtida
facilmente a partir da representacdo do nimero positivo correspondente simplesmente com-
plementando cada bit da seqiiéncia, ou seja, trocando 0’s por 1’s e 1’s por 0’s. Apesar de
simplificar circuitos para operacdes bdsicas, este formato ainda mantém duas representacdes
distintas para o valor zero.

O formato mais aceito para inteiros com sinal é a representacdo em complemento de dois.
Para obter a representacdo de um ndmero negativo neste formato, computa-se inicialmente
a representacdo em complemento de um e adiciona-se 1 ao bit menos significativo. Neste
caso, o valor inteiro associado a seqiiéncia s,,—1 ... Sg €

n—2
E S; 2" — Sp—1° 2",
=0

Este formato mantém a simplicidade dos circuitos aritméticos e tem apenas uma repre-
sentacdo para o valor zero. Uma caracteristica que lhe € peculiar é o fato de que a faixa de
valores representdveis nao € simétrica em torno de 0, havendo um valor negativo a mais que
a quantidade de valores positivos distintos. Por exemplo, seqiiéncias de cinco bits podem
representar valores entre -16 (10000) e +15(01111).

No formato de representagc@o para nimeros reais, associado ao conceito de notagao cien-
tifica, cada valor (pertencente ao dominio dos reais) é representado por um sinal, uma man-
tissa e um expoente. Entre as inlimeras combinagdes possiveis de formatos de representacdo
que seguem esta filosofia basica, o padrdo IEEE-754 tem sido o mais aceito e usualmente
suportado em hardware (através das unidades de ponto flutuante em co-processadores ou
incorporados a CPUs). Este formato suporta representagdes de nimeros reais em precisdo
simples (32 bits, dos quais 8 para a representa¢do do expoente e 23 para a representagdo da
mantissa), em precisdo dupla (64 bits, sendo 11 para o expoente e 53 para a mantissa) e em
precisdo estendida (80 bits). H4 também representacdes especiais para os valores —oo, +00
e NaN (Not a Number, associado ao resultado de operacdes sem significado matematico, tal
como a divisio de zero por zero).

Parece evidente que a representacdo bindria, apesar de ideal para o processador, é de
dificil manipula¢do por humanos. Por este motivo, adota-se usualmente a representacio
hexadecimal para denotar seqiiéncias bindrias.

49

A vantagem da representacdo hexadecimal sobre a decimal, que usamos no dia a dia, é a
facil associacdo com seqii€éncias bindrias. A tradugdo € direta: cada seqii€ncia de quatro bits
corresponde a um simbolo hexadecimal. A tabela a seguir define este mapeamento:

binario hexa | binario hexa
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

A representacdo octal também permite um mapeamento similar, de trés bits para um
digito entre O e 7. Entretanto, a representacdo hexadecimal também apresenta a vantagem de
alinhamento com um byte (8 bits, dois digitos hexadecimais) e palavras de 16 bits (quatro
digitos).

Capitulo

A linguagem de programacao C++

O fato de uma linguagem ter sido desenvolvida com uma aplicacio em mente nao sig-
nifica que ela nfo seja adequada para outras aplicagdes. A linguagem C, juntamente com
sua “sucessora” C++, é utilizada para um universo muito amplo de aplica¢cdes. Um dos atra-
tivos dessas linguagens € sua flexibilidade: o programador tem a sua disposicdo comandos
que permitem desenvolver programas com caracteristicas com alto nivel de abstracdo e ao
mesmo tempo trabalhar em um nivel muito préximo da arquitetura da maquina, de forma
a explorar os recursos disponiveis de forma mais eficiente. Por este motivo, o niimero de
aplicacdes desenvolvidas em C e C++ é grande e continua a crescer.

5.1 Fundamentos de C++

Nesta secdo sdo apresentados alguns principios que permitirdo dar inicio as atividades
de programacdo em C++. Outros aspectos da linguagem serdo apresentados conforme a
necessidade de ilustrar os conceitos apresentados ao longo do texto.

5.1.1 Organizagao de programas

Um programa em C++ deve ser organizado como um conjunto de objetos que intera-
gem para realizar alguma tarefa. Esta estratégia de organizacdo de programas é usualmente
conhecida como orientag@o a objetos e é um paradigma de programacao suportado por C++.

Objetos nada mais sdo do que varidveis, cuja estrutura interna pode ser complexa e que
tém operagdes especificas para sua manipulagdo. A definicdo da estrutura e do comporta-
mento de objetos da-se através da especificacdo de classes. Algumas classes e objetos estdo
especificados e definidos pela prépria linguagem (fazem parte de sua biblioteca padrdo), ou-
tros podem ser especificados e definidos pelo programador.

Além de objetos, o programador C++ pode definir funcdes. Cada fun¢do tem um nome,
uma lista de argumentos (que pode ser vazia) e um tipo de retorno (que também pode ser
vazio, indicado pela palavra-chave void). Cada argumento e o valor de retorno pode ser
de um dos tipos primitivos da linguagem ou do tipo de um objeto. A ordem e os tipos
dos argumentos, juntamente com o nome da funcdo, definem sua assinatura. Sobrecarga
(overloading) é o mecanismo da linguagem que permite a existéncia de mais de uma fung¢io

5.1. Fundamentos de C++ 51

com o mesmo nome, desde que o restante de suas assinaturas (listas de argumentos) sejam
diferentes.

Uma dessas func¢des tem um papel especial e deve ser definida pelo programador. A
funcdo main estabelece o ponto de inicio de execucdo de qualquer aplicacdo desenvolvida
em C ou em C++. Ela estabelece o mecanismo bédsico de comunicagdo entre a aplicacdo
e o ambiente (sistema operacional) no qual esta estd executando. A assinatura da funcdo
main determina como se d4 esta comunica¢@o. Do ambiente de execugdo para a aplicagdo, a
forma bésica é através da passagem de argumentos no momento da invocacdo do programa;
sdo os argumentos da linha de comando. Desta forma, main recebe dois parametros, como
indicado abaixo na sua assinatura:

int main (int argc, char xargv([]) {

O primeiro pardmetro, que tipicamente recebe o nome argc (argument count), indica o
nimero de palavras (strings separadas por espacos) presentes na linha de comando, incluindo
o préprio nome do programa. Por exemplo, uma chamada a um programa de nome eco com
dois argumentos, como

eco um dois

faria com que o valor de argc passado para a funcdo main fosse igual a trés.

O segundo parametro, cujo nome tipico é argv (argument value), ¢ um arranjo de pon-
teiros para caracteres, onde cada elemento do arranjo representa uma das palavras da linha
de comando. Essa € a forma que a linguagem C utiliza para representar strings de caracteres.
Assim, no exemplo acima a funcio main receberia as seguintes strings nesta varidvel:

e Em argv[0], a seqiiéncia de caracteres "eco";
e em argv[1], aseqiiéncia de caracteres "um"; e
e em argv[2], a seqliéncia de caracteres "dois".

Observe que argv [0] sempre armazenard o nome do programa sendo executado, en-
quanto que argv [i] armazenard o ¢-ésimo argumento passado para o programa, para ¢
variando de 1 até argc—1.

Quando o programa nao faz uso dos argumentos da linha de comando, € usual omitir da
defini¢do da funcdo a declaracdo dos parametros:

int main() { ... }

O valor de retorno da funcdo main é repassado para o ambiente de execugdo quando do
final da execugdo da aplicacdo. Para tanto, utiliza-se o comando return da linguagem, que
pode ocorrer sem argumentos quando a func¢do ndo tiver retorno (for do tipo void) ou deve
ter um argumento que € uma expressao cujo resultado é de um tipo compativel com o tipo de
retorno da funcdo.

Por convencao, um valor de retorno para a funcdo main diferente de O serve para indicar
ao sistema operacional (ou a um outro processo que tenha ativado este programa) que alguma

5.1. Fundamentos de C++ 52

condicao de erro ocorreu que impediu o programa de completar com sucesso sua execugao;
o valor de retorno 0 indica a terminac@o sem problemas. Alternativamente, a fun¢do main
pode encerrar com a invocacdo da fun¢do exit, que recebe esse valor de retorno para o
ambiente como argumento.

Stringsem C

Um dos tipos de agregados que mais ocorre na programacado de sistemas € a seqiiéncia
de caracteres, ou string. Apesar de C++ ter uma classe st ring definida em sua biblioteca
padrao, a linguagem C ndo suporta esse tipo bdsico; ao invés, utiliza uma convencio para
tratamento de arranjos de caracteres que permite o uso de diversas fungdes de manipulagdo
de strings na linguagem. Como algumas fun¢des em C++ preservam compatibilidade com
esse tipo de representacio, como a propria fun¢do main acima, ele é apresentado a seguir.

Por convengdo, C considera como uma string uma seqiiéncia de caracteres armazenada
sob a forma de um arranjo de tipo char cujo dltimo elemento é o cariter NUL, tipicamente
representado na forma de cardter, \0’, ou simplesmente pelo seu valor, 0. Por exemplo,
uma string C poderia ser declarada e inicializada como em

char exemplo[4] = {'a’,’b’,’c’,’"\0"};

Observe que o espago para o cardter \0’ deve ser previsto quando dimensionando o
tamanho do arranjo de caracteres que serd manipulado como string. No exemplo, o arranjo
de quatro caracteres pode receber apenas trés letras, ja que o ultimo cardter estd reservado
para o NUL.

C e C++ suportam uma forma de representa¢do de uma string constante através do uso
de aspas:

char exemplo[4] = "abc";

Este exemplo € equivalente ao anterior — a string "abc" contém quatro caracteres,
sendo que o cardter * \0’ é automaticamente anexado a string pelo compilador.

Func¢des que manipulam strings trabalham usualmente com a referéncia para o inicio da
seqiiéncia de caracteres, ou seja, com um ponteiro para a string. A manipulacdo de ponteiros
¢ fonte usual de confusido em qualquer linguagem.

Considere, por exemplo, um trecho de cédigo com duas varidveis do tipo ponteiro para
caracteres s1 e s2. Supondo que as duas varidveis tivessem sido declaradas e seus contetidos
devidamente inicializado com strings, ndo seria possivel copiar o contetido de s2 para s1
simplesmente por atribui¢do, como em

sl = s2;
Da mesma forma, ndo seria possivel comparar seus conteidos diretamente, como em

if (sl != s2)

Nessas duas situagdes, o que estaria envolvido na expressdo seriam os enderecos armazena-
dos por essas varidveis. No exemplo da atribuicdo, o endereco armazenado em s2 estaria

5.1. Fundamentos de C++ 53

sendo atribuido a varidvel s1. Na comparacdo, os dois endere¢os em s1 e s2 estariam sendo
comparados e ndo os respectivos contetidos.

Em C, particularmente para strings de caracteres, um conjunto de rotinas foi definido
como parte da biblioteca de funcionalidades bésicas da linguagem, tais como strcpy (c6-
pia) e st rcmp (comparagdo). Para utilizar essas fun¢des em um programa C++, o arquivo
de cabecalho cstring deve ser incluido no programa fonte.

5.1.2 Expressoes

O corpo de uma fung¢do, como main, € definido através dos comandos que serdo por ela
executados. Esses comandos sdo indicados como uma seqiiéncia de expressdes vdlidas da
linguagem.

Antes de mais nada, € interessante que se apresente a forma de se expressar comenta-
rios em um programa C++. A forma preferencial de incluir comentarios no cédigo é através
da seqiiéncia //, que faz com que o restante da linha seja interpretado como comentario.
Comentérios no padrdo da linguagem C, indicados pelos terminadores / x (inicio de comen-
tario) e =/ (fim de comentario), também sdo aceitos; quaisquer caracteres entre estes dois
pares de simbolos sdo ignorados pelo compilador. Comentérios em C ndo podem ser aninha-
dos, mas podem se estender por diversas linhas e podem comecgar em qualquer coluna. Por
exemplo,

/* Exemplo de
x comentario
*/
void func() {
// esta funcao nao faz coisa alguma

AN BN =

}

A posicao das chaves ndo € relevante.

As expressoes na linguagem C++ sdo sempre terminadas pelo simbolo ; (ponto e vir-
gula). Uma expressdo nula € constituida simplesmente pelo simbolo terminador. Assim, a
funcdo do exemplo acima é equivalente a

1 void func()
2 {
3 ;
4 t
O comando de atribui¢cdo em C++ € indicado pelo simbolo =, como em
1 void func () {
2 int a, b, c;
3 a = 10; // a recebe valor 10
4 b =c¢ = a; // b e ¢ recebem o valor de a (10)
5 }

Observe neste exemplo que a atribui¢do pode ser encadeada — na tltima linha da fungao
acima, c recebe inicialmente o valor da varidvel a, e entdo o valor de c serd atribuido a
varidvel b.

5.1. Fundamentos de C++ 54

Expressoes aritméticas em C++ podem envolver os operadores bindrios (isto é, operado-
res que tomam dois argumentos) de soma (+), subtracdo (=), multiplicacdo (x), divisdo (/).
Valores negativos sao indicados pelo operador undrio —. Adicionalmente, para operagdes en-
volvendo valores inteiros sdo definidos os operadores de resto da divisdo inteira ou modulo
(%), incremento (++) e decremento (——). Por exemplo,

1 void func () {

2 int a=10, b, c¢, d;

3

4 b = 2xa; // b recebe 20
5 a+t+; // a recebe 11
6 c = Db/a; // c recebe 1
7 d = b%a; // d recebe 9
8

}

A Figura 5.1 ilustra o resultado associado as duas dltimas linhas.

Figura 5.1 Resultados da divisao inteira.

El:ll 11
resto—m9 1 «€— guociente

Cada um dos operadores de incremento e decremento tem duas formas de uso, depen-
dendo se eles ocorrem antes do nome da varidvel (pré-incremento ou pré-decremento) ou de-
pois do nome da varidvel (pds-incremento ou pés-decremento). No caso do exemplo acima,
onde o operador de incremento ocorre de forma isolada em uma expressao (sozinho na linha),
as duas formas possiveis sdo equivalentes. A diferenca entre eles ocorre quando estes opera-
dores sdo combinados com outras operacdes. No exemplo acima, as linhas de atribuicdo a b
e incremento de a poderiam ser combinados em uma dnica expressao,

b = 2xa++;

Neste caso, o valor de a € inicialmente utilizado na expressdo (e portanto b recebe 2*10) e
apenas depois serd incrementado (a forma pds-incremento). Observe como essa expressao é
diferente de

b = 2% (++a);

pois neste caso o valor de a seria inicialmente incrementado (forma pré-incremento) e apenas
depois utilizado no restante da expressao.

Na prética, os parénteses na expressao acima poderiam ser omitidos uma vez que a prece-
déncia do operador de incremento é maior que da multiplicagdo — ou seja, o incremento sera
avaliado primeiro. O Apéndice 5.3 apresenta a ordem de avaliagcdo para todos os operadores
da linguagem.

C++ tem também uma forma compacta de representar expressoes na forma

var = var op (expr);

5.1. Fundamentos de C++ 55

onde uma mesma varidvel var aparece nos dois lados de um comando de atribuicdo. A
forma compacta é

var op= expr;
Por exemplo, as expressoes

a += b;
c *= 2;

sdo respectivamente equivalentes a

a + b;
c * 2;

a
C

5.1.3 Expressdes condicionais

Um tipo especial de expressdo € a expressao condicional, cujo resultado é um valor
que serd interpretado como falso ou verdadeiro. Em C++, uma expressdo desse tipo tem
como resultado um valor do tipo bool. Como a linguagem C nao suporta diretamente um
tipo de dado booleano, ela trabalha com representacdes inteiras para denotar estes valores
— o resultado de uma expressdo condicional € um valor inteiro que serd interpretado como
falso quando o valor resultante da expressdo € igual a 0, e como verdadeiro quando o valor
resultante € diferente de 0.

Uma expressdo condicional usualmente envolve a comparagdo de valores através dos
operadores relacionais. Os operadores relacionais em C++ sdo:

maior que | >= maior que ou igual a
menor que | <= menor que ou igual a
== iguala != diferente de

>
<

Aqueles que conhecem outras linguagens de programacio, como Pascal, devem observar que
o operador de igualdade € ==, e ndo =. Esta é uma causa comum de erros para programadores
que estdo acostumados a utilizar = como um operador relacional.

Expressoes condicionais elementares (comparando duas varidveis ou uma varidvel e uma
constante) podem ser combinadas para formar expressdes complexas através do uso de ope-
radores booleanos. Estes operadores sdo

&& AND
|| OR
' NOT

O operador && (and) resulta verdadeiro quando as duas expressdes envolvidas sdo verda-
deiras. O operador | | (or) resulta verdadeiro quando pelo menos uma das duas expressoes
envolvidas € verdadeira. Além destes dois conectores bindrios, ha também o operador una-
rio de negacdo, !, que resulta falso quando a expressdo envolvida é verdadeira ou resulta
verdadeiro quando a expressdo envolvida ¢ falsa.

Expressoes logicas complexas, envolvendo diversos conectores, sdo avaliadas da es-
querda para a direita. Além disto, & & tem precedéncia maior que | | e ambos tém precedén-
cia menor que os operadores 16gicos relacionais e de igualdade. Entretanto, recomenda-se

5.1. Fundamentos de C++ 56

sempre a utilizacdo de parénteses para tornar claro qual é a ordem desejada de avaliagdo
das expressdes. A excecdo a esta regra ocorre quando um niimero excessivo de parénteses
pode dificultar ainda mais a compreensiao da expressdo; em tais casos, o uso das regras de
precedéncia da linguagem pode facilitar o entedimento da expressao.

5.1.4 Controle do fluxo de execugéo

O corpo de funcdes e métodos em C++ é expresso usando construgdes da programacao
estruturada, a qual permite agrupar comandos na forma de seqii€ncias intercaladas com co-
mandos de sele¢do e repeticdo.

A seqiiéncia de comandos em uma funcdo C++ é denotada simplesmente pela ordem da
ocorréncia das expressdes no cddigo, como ja ilustrado em exemplos anteriores.

A construgdo de sele¢cdo, um comando do tipo IF-THEN-ELSE, é expressa em C++
com as palavras-chaves if...else. A Figura 5.2 apresenta um exemplo com a repre-
sentagdo gréfica deste comando, usando a notacdo de diagrama de atividades de UML (a
Unified Modeling Language definida pelo consércio OMG, Object Management Group), e
a correspondente codificagdo em C++. Apds a palavra-chave i f deve haver uma expressao
condicional entre parénteses. Se a expressao for avaliada como verdadeira, entdo a expressio
sob if serd realizada; se for falsa, a expressdo sob else serd executada.

Figura 5.2 Selecdo com if.. . else

[a =10] x [a ==10]

ifla<10){
c=a*10:
b=Dh + a:

} else
b=h-C;

(a) Representacao grafica (b) Expressao em C++

Este exemplo também introduz o conceito de expressao composta, ou seja, a primeira
das expressdes no if-else deste exemplo é na verdade um bloco contendo diversas expressdes.
Neste caso, o bloco de comandos que deve ser executado nessa condi¢do deve ser delimitado
por chaves { e }. Algumas observagdes adicionais relevantes com relacio a este comando
sdo:

1. Em C++, hé diferencas entre letras mindsculas e maidsculas. Como todos os comandos
em C++, as palavras chaves deste comando estdo em letras mindsculas. Assim, as
formas IF (ou If ou iF) ndo sdo formas vdlidas em C++ para denotar o comando if.

2. Ao contrdrio do que ocorre em Pascal ou FORTRAN, a palavra then nio faz parte da
sintaxe deste comando em C++.

5.1. Fundamentos de C++ 57

3. A clausula else pode ser omitida quando a expressdo a executar na condi¢do falsa for
nula.

4. No caso de haver mais de um if que possa ser associado a uma cldusula else, esta
serd associada ao comando if precedente mais proximo.

Outra construcdo estruturada de sele¢do suportada por C++ € o comando switch case
(Figura 5.3). Neste caso, apds a palavra-chave switch deve haver uma varidvel entre pa-
rénteses, que deve ser do tipo inteiro ou carater. Apds a especificagdo dessa varidvel, segue-se
uma lista de valores possiveis para a varidvel que devem ser considerados na selegdo. Cada
elemento da lista (ou cada caso) € iniciado com a palavra-chave case seguida por um valor
ou uma expressao inteira e o cardter ' :’.

Figura 5.3 Selecéo em C++ usando a forma switch. . . case. Observe que o conjunto de a¢des
associado a cada caso encerra-se com a palavra-chave break.

awitch (a)l |

[a=10] ca=se 10:
[el=€] t+a;
break;
[a=20] a=a+ad =
— - case Z0:
[el=g] a += 3;
break:;
ﬂl caze 100:
[elze] d += 5;
break;
a=a-1) defaunlt:
a += 10;
i
(a) Representacao grafica (b) Expressao em C++

Neste exemplo, a varidvel a pode ser do tipo int ou char. A palavra-chave especial
default indica que acdo deve ser tomada quando a varidvel assume um valor que nao foi
previsto em nenhum dos casos anteriormente listados. Assim como a condi¢do else no
comando if é opcional, a condi¢cdo default também € opcional para o switch-case.
Observe também a importancia da palavra-chave break para delimitar o escopo de acdo de
cada caso — fossem omitidas as ocorréncias de break no exemplo, a semantica associada
ao comando seria essencialmente diferente (Figura 5.4).

Comandos de repeticdo ou iteracdo em C++ sdo suportados em trés formas distintas. A
primeira forma € while, na qual uma condicdo é verificada antes da primeira execugdo do
bloco de comandos. Se a condicdo for avaliada como falsa, o bloco ndo é executado nenhuma
vez (Figura 5.5).

Outra forma de expressar um comando de repeticdo em C++ € através do comando do
while, que garante a execugdo do bloco de comandos pelo menos uma vez antes de avaliar
a condi¢do de terminacdo (Figura 5.6).

A terceira forma associada ao comando de repeticdo em C++, for, facilita a expressao de
iteracdes associadas a contadores, com uma varidvel que € inicializada e incrementada para

5.1. Fundamentos de C++ 58

Figura 5.4 Selecdo em C++ usando a forma switch. .. case com a omissdo da palavra-chave
break em cada bloco de comandos.

awitch (a)l |
[a=10]
case 10:
[elzg] ++a;
[8:201;_ a=a+3
(' j case 20:
[else] 2 4= 3
r
S a=ar5) caze 100:
[elzg] a += 5;
[(2==-1) default:
a += 10;
t
(a) Representacao grafica (b) Expressao em C++
Figura 5.5 Comando de repeticdo while.
‘L [a=10] D —a+A
bi=2%a while (a = 10)
[else] b= 2 * ++a;
(a) Representagdo grafica (b) Expressdo em C++

Figura 5.6 Comando de repeti¢do do while.

clo

bh =2 * ++a;

[el=g]

while (a < 10);

(a) Representagdo grafica (b) Expressdo em C++

5.1. Fundamentos de C++ 59

controlar a execugdo repetida. Considere que, na situacdo apresentada na Figura 5.5, a varié-
vel a tivesse sido anteriormente inicializada com o valor 0. O comando for correspondente
seria entdo:

for (a=0; a<1l0; ++a)
b = 2x(a+l);

Neste exemplo, a é uma varidvel que tem a funcido de contador, assumindo valores O,
1, ..., 9. Enquanto o valor de a for menor que 10 (a condi¢do de término da iteracdo),
a expressao (simples ou composta) no corpo da iteragdo serd repetidamente avaliada. Se
a varidvel ndo tiver sido declarada anteriormente, a declaracdo pode ser combinada com a
inicializacdo do lagco, como em

for (int a=0; a<10; ++a)

Qualquer que seja forma usada para indicar o comando de repeticio — while, do
while ou for — hd duas formas de se interromper a seqiiéncia de execug@o do bloco de
comandos. A primeira forma, usando a palavra-chave cont inue, serve para indicar o fim
prematuro de uma iteragdo. A outra forma de interrup¢do de um comando de repeti¢do é o
comando break, que indica o fim prematuro de todo o comando de iteracdo. Por exemplo,
em

for (a=0; a<l1l0; ++a) {
if (b == 0) {

continue;

c/b;
= b-1;

O Q
o

}

se a linha com o comando cont inue for executada, o valor de a sera incrementado e entdo
o teste da iteracdo serd reavaliado para definir a continuidade ou nao do lago de repeticdo. Ja
no exemplo abaixo,

for (a=0; a<1l0; ++a) {

if (b == 0)
break;

c = c/b;

b = b-1;

quando (se) b assumir o valor 0, o laco serd simplesmente interrompido e a primeira instru¢ao
apods o bloco for serd executada.

5.1.5 Arquivos em C

Na linguagem de programacdo C, a informacao sobre um arquivo € acessada através de
um descritor cuja estrutura € definida no arquivo de cabegalho stdio.h. Um programa C
que va manipular arquivos deve entdo incorporar ao inicio de seu programa fonte a linha de
inclusdo desse arquivo de cabecalho:

5.1. Fundamentos de C++ 60

#include <stdio.h>

Esse arquivo de cabegalho define o nome de tipo FILE associado a essa estrutura. Nao
€ necessdrio conhecer o formato interno dessa estrutura para manipular arquivos. O pro-
gramador C, para acessar arquivos, define varidveis ponteiros para este tipo, FILE *, que
sdo manipuladas diretamente pelas fungdes da biblioteca padrdo de entrada e saida. Tais
variaveis sdo usualmente chamadas de manipuladores de arquivo.

Assim, a funcdo que vai manipular o arquivo deve incluir a declaracdo de uma varidvel
manipulador de arquivo, como em:

FILE *argfFonte;

O objetivo de manipular um arquivo € realizar operacdes de leitura e escrita sobre seu
conteido. Para que essas operagdes de transferéncia de dados tenham sucesso, é preciso que
haja a permissio adequada para a operagdo. Por exemplo, um teclado seria um dispositivo
que ndo aceita saida de dados (escrita), mas apenas entrada (leitura).

Para abrir um arquivo em C, a rotina fopen € invocada recebendo dois pardmetros.
O primeiro é uma string com o nome do arquivo que serd aberto. O segundo parametro é
outra string que especifica o modo de acesso, que pode conter os caracteres r (leitura), w
(escrita), a (escrita ao final — append), e b (acesso em modo bindrio). O valor de retorno é
o manipulador alocado para o arquivo aberto.

Por exemplo, para realizar a leitura do conteddo de um arquivo teste . asm, a seguinte
expressdo poderia ser usada no programa:

argFonte = fopen("teste.asm", "r");

Caso o arquivo nao possa ser aberto, a funcdo fopen retorna o ponteiro nulo. Assim,
para verificar de o arquivo foi aberto sem problemas, é necessério testar o valor de retorno:

if (argFonte != 0) {
/* tudo bem x/
}
else {
/* erro x/

Encerradas as operacdes sobre um arquivo, ele deve ser fechado. Isso permite que o
sistema operacional libere o espago ocupado pelas informacdes sobre o arquivo para que esse
mesmo espago possa ser reocupado para a manipulagcdo de outros arquivos. Esta liberagdo é
importante, uma vez que sistemas operacionais tipicamente limitam a quantidade de arquivos
que podem ser abertos simultaneamente devido a restricdes de espaco alocado para essas
estruturas auxiliares.

Para fechar um arquivo previamente aberto, a rotina fclose pode ser usada. Ela re-
cebe como argumento o manipulador do arquivo e nio retorna nenhum valor. Assim, apds
encerrada a operacdo com o arquivo a expressdo fclose (argFonte) ; fecha-o.

Quando o arquivo € aberto, a posi¢do corrente (mantida internamente pelo sistema) é o
inicio do arquivo. A cada operagdo executada sobre o arquivo, essa posi¢cao € atualizada. O
valor da posi¢do corrente pode ser obtido pela fungdo ftell. A funcdo feof retorna um

5.1. Fundamentos de C++ 61

valor verdadeiro (inteiro diferente de 0) se a posi¢do corrente para o arquivo indicado é o
final do arquivo, ou falso (inteiro igual a 0) em caso contréario.

Na maior parte dos exemplos analisados neste texto, os arquivos estardo sendo manipu-
lados de forma seqiiencial. Assim, na leitura de um arquivo contendo texto, apds a leitura de
um caréter a posicdo corrente do arquivo estard indicando o préximo cardter; apds a leitura
de uma linha, a posicdo indicada serd o inicio da préxima linha. A rotina C para obter um
cardter de um arquivo é fgetc:

int fgetc (FILE xstream);

O valor de retorno de £getc € um inteiro, que pode conter o c6digo ASCII do carater
ou o valor EOF (definido em stdio.h), que indica o final do arquivo ou a ocorréncia de
alguma condicdo de erro.

Uma linha de um arquivo texto nada mais é do que uma seqiiéncia de caracteres seguido
por um cardter terminador de linha (newline). Tipicamente, o cariter terminador de linha
adotado € o CR (ASCII 0x0D), embora alguns sistemas operacionais adotem o par CR/LF (0
par de valores 0x0D e 0x0A) como terminador de linha. A linguagem C traduz o terminador
de linha para o cardter ' \n"' .

Para ler uma linha de um arquivo texto, a funcao da biblioteca padrdao C fget s pode ser
utilizada:

char xfgets(char xs, int size, FILE *stream);

Essa fun¢do recebe trés argumentos. O primeiro € o endereco de um arranjo de caracteres que
ird receber a linha lida; esse arranjo deve ter capacidade para pelo menos size caracteres. O
segundo é o nimero maximo de caracteres que deve ser lido da linha, caso a linha tenha mais
caracteres que essa quantidade. O terceiro pardmetro é o manipulador do arquivo de onde a
linha serd lida. O retorno € um ponteiro para o inicio do arranjo com a linha, ou o ponteiro
nulo caso o final do arquivo tenha sido atingido. Se houver espaco para o terminador de
linha no arranjo, ele serd incluido. Apds o tltimo caréter lido, a rotina inclui o terminador de
string " \0"'.

Operagdes correspondentes para a escrita em arquivos sdo oferecidas pela biblioteca pa-
drdo de C. Para escrever um cardter na posicdo corrente de um arquivo, a rotina fputc é
usada:

int fputc(int c¢, FILE *stream);
Para escrever uma string, a rotina fputs pode ser utilizada:
int fputs(const char *s, FILE xstream);

Neste caso, a string apontada por s (sem o terminador de string ’ \ 0’) € escrita no arquivo.

A funcdo fseek permite modificar a posi¢do corrente para um ponto arbitrdrio do ar-
quivo, se tal operacdo for permitida. O primeiro argumento dessa funcdo é o manipulador
do arquivo; o segundo, um valor 1ong indicando o deslocamento desejado; e o terceiro, um
valor inteiro inidcando a referéncia para o deslocamento, que pode ser o inicio do arquivo
(SEEK_SET), a posicdo corrente (SEEK_CUR) ou o final do arquivo (SEEK_END). Um va-
lor de retorno O indica que a operagdo foi completada com sucesso. A fungdo rewind
retorna a posi¢ao corrente para o inicio do arquivo, sem valor de retorno.

5.2. Palavras reservadas em C e C++

62

5.2 Palavras reservadas em C e C++

asm auto break case
catch char class const
continue default delete do
double else enum extern
float for friend goto

if inline int long

new operator private protected
public register return short
signed sizeof static struct
switch template this throw

try typedef union unsigned
virtual void volatile while

5.3 Precedéncia de operadores

Na tabela a seguir resume-se a precedéncia dos operadores da linguagem C, assim como
sua associatividade. Operadores em uma mesma linha t&ém a mesma precedéncia, e as linhas
estdo ordenadas em ordem decrescente de precedéncia.

Operador Associatividade
() [1-—>. esq-dir
! ~4++ —— — (type) * & sizeof dir-esq
x /% esq-dir
+ - esq-dir
<< >> esq-dir
<<=>>= esq-dir
=== esq-dir
& esq-dir
A esq-dir
| esq-dir
&& esq-dir
|| esq-dir
?: dir-esq
=+=-—=c¢tc dir-esq

esq-dir

e O

Capitulo

Exercicios

1. Crie funcdes em C++ para realizar as seguintes conversdes entre tipos:

(a)

(b)

(c)

(d)

(e)

um cardter que representa um digito decimal para o valor inteiro correspondente
(retorna -1 se o cardter ndo € um digito);

um cardter que representa um digito hexadecimal para o valor inteiro correspon-
dente (retorna -1 se o carater ndao € um digito hexadecimal);

uma string com uma seqiiéncia de digitos decimais, opcionalmente precedida com
o cardter ’ —' , para o valor inteiro correspondente;

um valor inteiro para uma string contendo a representacdo decimal desse valor,
precedida pelo cardter ’ —’ se o valor for negativo;

um valor inteiro para uma string com 32 caracteres contendo a representacio bi-
ndria em complemento de dois desse valor.

2. Crie uma funcido em C++ que recebe duas string e retorna verdadeiro se elas forem
iguais independentemente se seus caracteres estiverem em mintsculas ou em maius-
culas. Assim, a invocac¢do com duas strings cujo contetidos sdo "Abc" e "aBc" deve
retornar true.

3. ROT13 é um antigo e simples procedimento para criptografar textos, que substitui cada
cardter por outro que estd distante 13 posi¢des no alfabeto — A por N (e N por A), B
por O e assim sucessivamente.

(a)

(b)

(c)

Crie uma func¢do em C++ que receba uma string e retorne outra string criptografada
por esse esquema. Caracteres ndo-alfabéticos devem permanecer inalterados e a
caixa do cardter (maidscula ou mindscula) deve ser preservada.

Considere que um container de strings contém palavras, todas em letras minus-
culas. Apresente uma funcdo C++ que aplique o procedimento de criptografia
ROT13 a cada palavra e retorne uma lista de pares de strings que sdo equivalentes
em ROT13. Por exemplo, se terra e green sio elementos do container, a lista
de saida deve conter uma string com o par terra:green.

Mostre como estender ROT13 para contemplar caracteres de pontuagdo e outros
elementos da tabela ASCII. Ao invés de 13, qual é o passo usado neste caso?

Exercicios 64

4. Algumas implementagdes da biblioteca STL de C++ oferecem containers complemen-
tares, como € o caso de slist para a implementacdo de uma lista simplesmente
ligada. No entanto, neste caso, as operacdes insert e erase tém complexidade
linear ao invés de constante, como é o caso de 11 st. Por que isto acontece? Pesquise
essas implementagdes e mostre qual € a alternativa que elas propdem para aliviar esse
problema.

5. Uma das formas possiveis de implementacido de uma lista simplesmente ligada € atra-
vés da utilizacdo de dois arranjos, um para os elementos armazenados e outro con-
tendo, na mesma posicio correspondente ao elemento, a indica¢do da posicdo no ar-
ranjo para o proximo elemento. Um indice invalido (por exemplo, —1) € utilizado para
indicar que ndo ha préximo elemento. Usando esta estratégia, mostre como seriam re-
alizadas as seguintes operacdes na lista:

(a) inserir novo elemento no inicio;

(b) inserir novo elemento no final;

(c) retirar o elemento do inicio;

(d) retirar o elemento do final;

(e) inserir um novo elemento em posicao intermedidria indicada;
(f) retirar o elemento da posicao intermedidria indicada.

6. Uma possivel implementacao de uma lista simplesmente ligada utiliza um arranjo onde
cada posi¢do armazena dois valores, sendo o primeiro uma chave de busca e o segundo
uma posicao para o proximo elemento da lista. Um valor invédlido nesta posi¢ao (aqui
denotado A) indica que ndo ha préximo elemento. Uma varidvel auxiliar (cabeca)
indica qual a posi¢do do arranjo que tem o primeiro elemento da lista. Outra varidvel,

livre, aponta para o inicio da lista de elementos livres. Utilizando essa abordagem de
implementagdo, considere a estrutura com os seguintes elementos:

Cabeca: 3

Livre: 5

Posi¢do | Chave | Proximo
0 3 6
1 9 2
2 2 A
3 5 7
4 7 0
5 1 4
6 4 A
7 3 1

(a) Apresente uma representacdo grafica para a lista ligada ocupada e para a lista de
elementos livres.

(b) Apresente o estado final dessa estrutura apds cada passo da execucdo da seguinte
seqiiéncia de operagdes:

Exercicios 65

10.

e Inserir no inicio da lista um elemento com chave 8§;
e Retirar da lista um elemento com chave 3; e
e Acrescentar no final da lista um elemento com chave 6.

(c) Como essas operacdes poderiam ser implementadas em cada uma das estruturas
lineares da STL de C++? Em qual delas a implementagdo seria mais eficiente?

(d) Considere uma instalagdo de C++ que ndo suporte as estruturas de STL. Neste
caso, usando apenas essa estrutura de arranjos, proponha uma implementagdo de
um conjunto de fungdes que suporte as operacdes de manipulagdo de lista.

. Para a seguinte lista de valores inteiros,

123, 091, 325, 129, 245, 003

apresente todos os passos intermedidrios da ordenacdo usando

(a) Ordenacdo pela selecdo do menor valor;

(b) Quicksort;

(c) Radix sort tendo como raiz um digito na representacao decimal;

(d) Radix sort tendo como raiz trés bits da representacdo bindria.

Para o algoritmo de ordenacgdo da bolha (bubble sort):

(a) apresente uma descricdo do algoritmo em pseudo-c6digo, com notac¢do similar a
utilizada para a apresentacdo dos demais algoritmos de ordenacao no texto;

(b) aplique o algoritmo de ordenacdo ao conjunto de valores do exercicio anterior;

(c) compare este algoritmo com o de ordenagdo pela selecio do menor valor em ter-
mos dos nimeros de comparagdes e nimeros de trocas. Como esse resultado pode
ser generalizado, em termos de projecdo, para um ndmero n qualquer de elemen-
tos?

. O algoritmo quicksort apresentado no texto ndo faz um bom particionamento quando

o valor na posicio init, escolhida como pivd, é menor ou maior que todos os demais
valores considerados na invocagdo. Modifique o algoritmo de modo que o pivd seja
selecionado pela estratégia mediana de trés, ou seja, ao invés de tomar o pivd dire-
tamente do valor inicial tome a valor intermedidrio entre as tr€s primeiras posi¢des.
Modifique também de forma que, se a faixa especificada tiver apenas trés valores ou
menos, a ordenagcdo nao use quicksort mas uma estratégia de comparacao direta de
valores.

Uma estrutura de arvore bindria foi utilizada para armazenar nés de informagdo com
chaves de valor 2, 11, 23,7, 5,41, 13 e 19, inseridos nesta ordem.

(a) Apresente graficamente a organizacao desta drvore apds a inser¢@o de cada um dos
elementos acima.

Exercicios 66

(b) Mostre uma representacio esquemadtica de como seria a estrutura da drvore caso
ela fosse balanceada, considerando que a arvore adote a estratégia de varredura
intra-ordem.

(c) Repita o item (b) considerando que a arvore adote a estratégia pré-ordem.
(d) Repita o mesmo item considerando que a drvore adote a estratégia pds-ordem.
11. Uma arvore bindria contendo como chaves valores do tipo inteiro foi construida se-
gundo a seguinte regra de formagao:
e (Cada n6 da arvore ocupa trés posi¢des no arranjo;
e A primeira das trés posi¢des de um né contém o valor da chave;

e A segunda das trés posicdes de um né contém a posi¢do no arranjo coma raiz
da sub-arvore esquerda; um valor -1 indica que nio h4 sub-4rvore esquerda para
este no;

e A terceira das trés posi¢cdes de um né contém a posi¢do no arranjo coma raiz da
sub-arvore direita; um valor -1 indica que n@o ha sub-drvore direita para este no.

O arranjo bt 1 a seguir representa a informacdo de uma arvore construida segundo esta
regra:

int btl[] = { 10, 3, 12, 7, 6, 9, 5, -1,
-1, 8, -1, -1, 15, 15, 18, 12,
_11 _11 19/ _11 _1};

(a) Ilustre graficamente a estrutura da drvore bindria representada por bt 1.

(b) Uma tentativa de implementagdo para realizar a varredura intra-ordem numa es-
trutura desse tipo foi proposta como a seguir:

void btscan (int =*t) {

if (x(t+1) != -1) btscan(t+=*(t+1));
cout << xt;
if (x(t+2) !'= -1) btscan(t+* (t+2));

}

No entanto, a invoca¢do btscan (bt1) gera um erro fatal de execugdo, o que
indica que a l6gica desta func¢éo apresenta um problema. Qual é o problema e qual
a sua solucao?

12. O conjunto de niimeros inteiros sem sinal

62512, 61544, 63489, 64118, 60382, 64550

representa identificadores que serdo usados como chaves em uma pesquisa em uma
tabela hash de 16 posi¢cdes. Mostre como seria a distribuicido dessas chaves usando
como fungao hash:

(a) O método do meio do quadrado;

Exercicios 67

13.

(b) O método da divisao.

Uma aplicagdo usual da técnica de folding para elementos do tipo string utiliza como
segmento um byte, cujo valor € a representagdo ASCII de cada cardter. Considerando
que os elementos que serdo armazenados numa tabela hash com 13 posi¢des, usando
o método da divisao, sejam

UNICAMP
Universidade
Campinas
Engenharia
Software

indique qual a posi¢c@o associada a cada elemento quando o valor inteiro é gerado a
partir da

(a) Soma dos valores ASCII de cada carater (folding de um carater combinado com
soma aritmética).

(b) Aplicacdo da funcdo bindria XOR entre todos os caracteres individualmente (fol-
ding de um carater combinado com soma ou-exclusivo).

(c) Aplicacdo da funcio bindria XOR entre pares de caracteres a partir da primeira
posicao (folding de dois caracteres combinado com soma ou-exclusivo).

